

Component Systems
for Lighting Applications

For Discharge Lamps

Ballasts, Ignitors, Power Switches, Capacitors and Lampholders

For Fluorescent Lamps
Ballasts, Capacitors, Lampholders, Starter Lampholders, Terminal Blocks and Accessories

For Incandescent Lamps
Transformers and Lampholders

For Emergency Lighting
Emergency lighting modules,
Rechargable Batteries and
Supports

Contents

1 Vossloh-Schwabe Projects 4-5
2 Ballasts for Discharge Lamps 6-2 1

Electronic ballasts, accessories	8
Luminaire protection device	$0-14$

Luminaire protection device 9-14
Electromagnetic ballasts 15-21
For HS and HI lamps 15-19
For HM and HI lamps 20-21
2 Ignitors and Accessoriesfor Discharge Lamps22-38
Electronic superimposed ignitors 24-32
Pulse ignitors 33-34
Electronic power switches 35
Switch units for electronic operating devices with 1-10 V interface 36
Start-up switches 37
Electronic discharge units 38
2 Lampholders for Discharge Lamps 40-49
E27 lampholders 42-44
E40 lampholders 44-46
GY9. 5 lampholders 46
RX7s lampholders 47-49
K12×30s lampholders 49
K12s-7 support 49
2 Technical Details
for Discharge Lamps 50-76
3 Electronic Ballasts for TC and T Lamps 78-83
For compact fluorescent lamps 80
For tubular fluorescent lamps 81-83
3 Electromagnetic ballasts
for TC and T Lamps 84-90
$\begin{array}{ll}\text { For compact fluorescent lamps and } \\ \text { tubular fluorescent lamps } & 86-90 \\ \text { Standard ballasts } & 86-89\end{array}$
Super low-loss ballasts 90
3. Lampholders and Accessories for TC Lamps 92-100
G23 lampholders 95-96
Accessories $98-99$
100
3 Lampholders and Accessories for T Lamps 102-115
G5 lampholders 104-107
G5 lampholders, degree of protection IP65/IP67 107
G13 lampholders $108-115$
108
G13 push-fit lampholders 109
G13 push-fit twin lampholders 109
G13 built-in lampholders $10-112$
112
Accessories for T8 and T12 lamps 113
G1 3 lampholders, degree of protection IP65/IP67, accessories 114-115
. Starter Holders and Terminal Blocks,
Accessories116-122
Starter holders 118
Terminal blocks 119-121
Built-in rocker switches 122
Technical Details
for Fluorescent Lamps 123-143
4 Parallel Capacitors 144-155
Technical details for parallel capacitors 148-155

Transformers for Low-voltage
Halogen Incandescent Lamps
156-158

Independent electronic converters 158

5

Lampholders for Low-voltage

Halogen Incandescent Lamps
160-167
G4, GZ4, G5.3, GX5.3, G6.35,
GY6. 35 lampholders, accessories
162-163
Lampholders with separate mounting spring for GU4 lamps
Lampholders with separate mounting spring
for GU5. 3 lamps
G53 lamp connectors
167

5 Lampholders for Mains Voltage
Halogen Incandescent Lamps
167-173

G9 lampholders, accessories 167-168
GU10, GZ10 lampholders, accessories 169-170
R7s ceramic lampholders 170-172
R7s metal lampholders 172
Connectors 173

5 Lampholders for General-service
Incandescent and Retrofit Lamps
174-204

E 14 lampholders
176-183
E 14 thermoplastic lampholders, one-piece
and cover caps
176-179
E 14 thermoplastic lampholders, three-piece
180-182
E 14 metal lampholders, three-piece
182-183
E27 lampholders
184-199
E27 thermoplastic lampholders, one-piece
and cover caps
184-188
E27 renovation kit lampholders 189
E27 thermoplastic lampholders, three-piece 189-192
E27 porcelain lampholders
193-194
E27 metal lampholders, three-piece 195
E27 metal pull-switch lampholders 196
E27 thermoplastic rocker switch lampholders 197
E27 festoon lampholders 198
B22d lampholders, accessories 199
Accessories for E14, E27 and B22d lampholders 200-203
E40 porcelain lampholders
204

6	Emergency Lighting Modules for TC and T Lamps	216-226
	Emergency lighting modules with self-diagnosis function	218-219
	Technical details for emergency lighting modules	220-226
7	General Technical Details	228-236
8	Glossary	237-239
9	Table of Reference Numbers and Approval Marks	240-246

LIGHT TECHNOLOGY PRODUCTS

Vossloh-Schwabe is not merely a manufacturer of top-quality components for the lighting industry, but above all a competent and innovative partner when it comes to providing the growing lighting market with cost-effective all-round solutions.

Featuring a future-proof component structure that already now satisfies both the requirements of energy-efficient lighting and European standards, VS' unique product range includes magnetic and electronic ballasts, state-of-the-art control systems (Blu2Light and LiCS), LED lighting systems and matching operating devices.

Employing in excess of 500 people in more than 20 countries, Vossloh-Schwabe is represented all over the world. VS can draw on extensive resources for R\&D as well as for international expansion activities. A highly motivated workforce, comprehensive market knowledge, profound industry expertise as well as eco-awareness and environmental responsibility show Vossloh-Schwabe to be a reliable partner for the provision of optimum and cost-effective lighting solutions.

Vossloh-Schwabe's dedication to delivering superior quality is reflected in its ISO 9001 certification.

Vossloh-Schwabe is ready to embark on a collaborative journey into an economically illuminated future.

LED components are just as much a part of our product range as light control systems. Our extensive range of powerful LED modules, LED drivers, Blu2Light and LiCS controllers and sensors is presented on our website
www.vossloh-schwabe.com.

We'll be happy to help you dimension your lighting project. Contact us.

PUMA Headquarters

Porsche Museum

PUMA Headquarters, Herzogenaurach

As the secret "capital of sport", the little German town of Herzogenaurach is home to the headquarters of the sport lifestyle company PUMA. Covering a total surface area of 50,000 square metres, the complex is made up of three buildings that are positioned so as to create a large central square, the PUMA Plaza.

The main aim of the lighting concept developed for the new PUMA corporate headquarters was to deliver optimum quality of light, enable maximum flexibility in using the available space and yield the greatest possible energy savings. No less than 985 electronic DALI ballasts and 4,650 standard electronic ballasts made by Vossloh-Schwabe went into implementing the lighting system.

The inner courtyard features additional red and white effect lighting in the form of ground-level linear markings created using LEDs made by Vossloh-Schwabe. These LEDs enable digital lighting sequences to flow over the square. To complement the clear-cut, rectilinear forms that characterise the entire building complex, a number of slender light columns, made of square aluminium sections, were installed to round off the courtyard's stylish appearance.

Porsche Museum, Stuttgart

The name "Porsche" both stands for a long tradition of outstanding quality and the excitement of high-octane driving. The Porsche Museum in Stuttgart constitutes a fitting presentation venue that does the brand image every justice. The architectural flagship thus serves to make the "Porsche experience" available to everyone.

The lighting installed in the Porsche Museum forms a crucial element of the exhibition space created for around 80 vehicles. It was important to ensure every detail of these high-end cars was clearly visible. In this regard, direct and reflecting lighting had to be reduced to an absolute minimum so as to neither irritate visitors, nor detract from the brilliant gloss of the bodywork.

This forms another instance in which Vossloh-Schwabe products have helped to add to the enjoyment of each and every visitor. Built-in electronic ballasts and electronic DALI safety converters ensure flickerfree, efficient light.

ELECTRONIC AND ELECTROMAGNETIC

2 Ballasts for Discharge Lamps

For high-pressure sodium lamps (HS), metal halide lamps (HI) and mercury vapour lamps (HM)
Electronic ballasts, accessories 8
Luminaire protection devices 9-14
Electromagnetic ballasts 15-21
For HS and HI lamps 15-19
For HM and HI lamps 20-21
Technical details for discharge lamps 78-1 19
General technical details 228-236
Glossary 237-239

Electronic Ballasts for HI Lamps 35 and 70 W

Shape: M3/K34

Casing: aluminium (M3)
heat-resistant polycarbonate (K34)
For ceramic discharge tube lamps (C-HI)
Power factor: ≥ 0.95
Ignition voltage: max. 5 kV
Operation frequency: 173 Hz
Push-in terminals with lever opener: $0.75-2.5 \mathrm{~mm}^{2}$
Total harmonic distortion: < 10\%
Temperature protection
Constant power consumption
Protection against "no load" operation
For luminaires of protection class I (metal casing)
For luminaires of protection class I and II
(plastic casing)
Degree of protection: IP20
Permissible load capacity: 20-120 pF
RFI-suppressed
Fixing brackets for screws M4
for base mounting
No flickering of defective lamps

Lamp				Electronic ballast								$\begin{aligned} & \text { System } \\ & \hline \text { Output } \\ & \text { W } \end{aligned}$
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Mains current A	Energy efficiency	Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature tc $\left({ }^{\circ} \mathrm{C}\right)$	Weight	

M3 - Electronic built-in ballast (with cap)

35	HI	GU6.5, G8.5, GU8.5, GX8.5, G12, E27	1×39	EHXc 35.325	183033	220-240	0.20-0.18	A2	-20 to 65	max. 80	220	43
70	HI	$\begin{aligned} & \text { G8.5, GU8.5, GX8.5, G12, } \\ & \text { PG12-2, E27, RX7s } \end{aligned}$	1×73	EHXc 70.326	183036	220-240	0.36-0.34	A2	-20 to 55	max. 80	220	80

M3 Built-in PCB - Electronic built-in ballasts (without cap)

35	HI	$\begin{aligned} & \text { GU6.5, G8.5, GU8.5, } \\ & \text { GX8.5, G12, E27 } \end{aligned}$	1×39	EHXc 35.325	183034	220-240	0.20-0.18	A2	-20 to 65	max. 80	180	43

K34 - Independent electronic ballasts with cord grip

35	HI	GU6.5, G8.5, GU8.5, GX8.5, G12, E27	1×39	EHXC 35.325	$\mathbf{1 8 3 0 3 5}$	$220-240$	$0.20-0.18$	A2	-20 to 65	max. 75	260
70	HI	G8.5, GU8.5, GX8.5, G12, PG12-2, E27, RX7s	1×73	EHXC 70.326	$\mathbf{1 8 3 0 3 8}$	$220-240$	$0.36-0.34$	A2	-20 to 55	max. 75	260

[^0]
Luminaire Protection Device

For electronic devices

When electronic components form part of lighting systems, it is often necessary to protect such components against power-supply interruptions and electric overloads (power surges).

These can be caused by switching inductive loads or by atmospheric discharges such as lightning striking the mains or the ground. A further cause can be induced voltages from neighbouring cables when working with leading-edge phase-cutting controls.

The protection unit reduces overvoltages at the connection terminals of electronic components. The remaining residual voltage is then reduced to a respective protective level, based on the discharge current.

SP 230/10 K

Suitable for luminaires of protection class II
Type 3 product
With integrated thermal fuse
Dimensions (LxWxH): 32×22x13 mm
Weight: 20 g
Connecting: solid wire, length: 50 mm

Ref. No.: 147230

SPC 230/10 K

If the protective luminaire component overloads, the connected lighting circuit will be interrupted. This cut-out function makes it easier to detect the end of life of the protective component, facilitates quick replacement by maintenance staff and provides reliable protection for lighting components. Suitable for luminaires of protection class II
Type 3 product
Dimensions (LxWxH): $53 \times 28 \times 27 \mathrm{~mm}$
Weight: 50 g
Screw terminals: 0.5-1.5 mm²

Ref. No.: 142736

SP 3/230/10 K

Suitable for luminaires of protection class I
Type 3 product
Dimensions $(\varnothing \times H): \varnothing 36 \times 75 \mathrm{~mm}$
Weight: 60 g
Screw terminals: 0.75-4 mm²

Ref. No.: 147233

Type	Ref. No.	Voltage $\begin{aligned} & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Max. load current A	Max. impulse voltage Uoc (V)	Discharge current*$(8 / 20 \mu \mathrm{~s})$		Protection level at discharge current of 1000 A	Safery max. A	Max. permitted casing temperature $\left({ }^{\circ} \mathrm{C}\right)$	Min. permitted ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$	Fixation
SP 230/10 K	147230	220-240	-	10000	5000	10000	$\leq 850 \mathrm{~V}$	25	80	-30	-
SPC 230/10 K	142736	220-240	16	10000	5000	10000	$\leq 850 \mathrm{~V}$	16	80	-30	M8×10
SP 3/230/10 K	147233	100-277	-	10000	5000	10000	$\leq 1000 \mathrm{~V}$	25	80	-30	M8x 10

[^1]
Luminaire Protection Device - Type 3

For electronic devices

These protective components are fitted with an LED indicator. Once the end of the component's life has been reached, the green LED goes out and
the protective component has to be replaced.

SP230/10 K/HS/i

The green LED light will go out if the protective function fails
Dimensions ($\mathrm{L} \times W \times H$): $90 \times 17.2 \times 63 \mathrm{~mm}$
Weight: 45 g
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixation on DIN installation rail
Ref. No.: 147240

Type	Ref. No.	$\begin{aligned} & \text { Voltage } \\ & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Max. load current (A)	Protection level at discharge current of 1000 A	Max. impulse voltage Uoc (V)	Dischar (8/20 IN (A)	current* $I_{\max .}(\mathrm{A})$	Safety max. A	Max. permitted casing temperature ${ }^{\circ} \mathrm{C}$	Fixation
SP230/10 K/HS/i	147240	220-240	16	$\leq 1000 \mathrm{~V}$	10000	5000	10000	16	-35 to 80	DIN-rail

* Discharge current: at 5000 A min. 15 strikes; at 10,000 A min. 1 strike

Luminaire Protection Device - Type 3

For electronic devices

These protective components are fitted with internal thermal fuses. The protective component will be disconnect from the mains at the end of the internal varistors' life or if there is a permanently overvoltage.
In that case the green LED goes out and the protective component has to be replaced.

SP3/230/10K/i

Suitable for luminaires of protection class I
Push-in terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Degree of protection: IP20
DEKRA approved acc. to EN 61643-11
Weight: 67/72 g
Ref. No.: 142743 without fixing threaded bolt Ref. No.: 142744 with fixing threaded bolt

SPC3/230/20K/i

Suitable for luminaires of protection class I
Push-in terminals: $0.75-2.5 \mathrm{~mm}^{2}$
Degree of protection: IP20
Comply with the requirements of EN 61643-11
Weight: 55/60 g
Ref. No.: 142752 without fixing threaded bolt
Ref. No.: 142751 with fixing threaded bolt

AC-system: TT-TN-IT
Temporary overvoltage
(TOV)-LV: 443 V AC (5 sec.$) / 443 \mathrm{~V}$ (120 min.)
(TOV)-MV/HV: 1200 V AC (200 msec.)
$I_{\text {sccr: }} 1000 \mathrm{~A}$
With integrated thermal fuse
Dimensions (LxW×H): $79 \times 45 \times 35 \mathrm{~mm}$

SP3 230/10K/i

SPC3/230/20K/i

Type	Ref. No.	Voltage $\begin{aligned} & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Max. load current A	Protection L-N (V)	level L-PE (V)	N-PE (V)	$\mu \mathrm{A}$	Max. impulse voltage Uoc (V)	Discharge current*$(8 / 20 \mu s)$		Safety max. A	Max. permitted casing temp. ${ }^{\circ} \mathrm{C}$	Fixing threaded bolt
SP3/230/10 K/i	142743	100-277	16	< 1500	< 1800	< 1800	1	10000	5000	10000	16	-35 to 80	without
SP3/230/10 K/i	142744	100-277	16	< 1500	< 1800	< 1800	1	10000	5000	10000	16	-35 to 80	with
SPC3/230/20 K/i	142751	100-277	16	< 1500	< 2200	-	1	20000	10000	20000	16	-35 to 80	with
SPC3/230/20 K/i	142752	100-277	16	< 1500	< 2200	-	1	20000	10000	20000	16	-35 to 80	without

[^2]
One-phase Luminair Protection Devices - Type 3 with Protection of Control Phase or DALI Interface

For electronic devices

These protective components are fitted with internal thermal fuses. The protective component will be disconnect from the mains at the end of the internal varistors' life or if there is a permanently overvoltage.
In that case the green LED goes out and the protective component has to be replaced.

SPC3/230/10K/i LS

One-phase overvoltage protection for control phase Comply with the requirements of EN 61643-11
Weight: 69/79 g
Ref. No.: 142755

SPC3/230/10K/i LS DI
With integrated coordination circuit
Ref. No.: 142756

SPC3/230/10K/i DALI

One-phase overvoltage protection for L, N, PE and for protection of DALI signal
Comply with the requirements of EN 61643-11
and EN 61643-21
Weight: 57/67 g
Ref. No.: 142753

SPC3/230/10K/i DALI DI

With integrated coordination circuit
Ref. No.: 142754

Suitable for luminaires of protection class 1 Dimensions (LxWxH): $79 \times 45 \times 35 \mathrm{~mm}$
Fixing threaded bolt on request
Push-in terminals: 0.2-2.5 mm²
Permitted casing temperature: -35 to $80^{\circ} \mathrm{C}$
With integrated thermal fuse
Fuse: max. 16 A
Max. residiual current (IPE): $1 \mu \mathrm{~A}$
Degree of protection: IP20

SPC3/230/10K/i LS

AC-system: TT-TN-IT
Temporary overvoltage

- (TOV)-LV: 443 V AC (5 sec.) / 443 V (120 min.)
- (TOV)-MV/HV: 1200 V AC (200 msec.)
$\left.\right|_{\text {sccr: }}: 1000 \mathrm{~A}$

SPC3/230/10K/i DALI DI

Type	Ref. No.	Voltage $\begin{aligned} & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Max. load current A	Protection L-N (V)	level $\mid \text { L-PE (V) }$	L2-N (V)	Max. impulse voltage Uoc (V)	$\begin{aligned} & \text { Dischar } \\ & \text { current } \\ & 18 / 20 \\ & \text { IN (A) } \end{aligned}$	ge цs) $I_{\text {max. }}$ (A)	Protection voltage $d+$ to $d-$ Channel 1 $0,5 \mathrm{kV} / 0,25 \mathrm{kA}$	DALI dl /d2 to PE Channel 2 $10 \mathrm{kV} / 5 \mathrm{kA}$	Capacity $d+$ to d pF
SPC3/230/10K/i LS	142755	100-277	5	< 1500	< 1900	< 1600	10000	5000	10000	-	-	-
SPC3/230/10K/i LS DI	142756	100-277	2.5	<1500	< 1900	< 1600	10000	5000	10000	-	-	-
SPC3/230/10K/i DALI	142753	100-277	5	< 1500	< 1900	-	10000	5000	10000	< 70	< 1000	<20
SPC3/230/10K/i DALI DI	142754	100-277	2.5	< 1500	< 1900	-	10000	5000	10000	<70	< 1000	<20

* Discharge current: at IN min. 15 strikes; at $I_{\text {max. }} 1$ strike

Integrated Coordination Circuit

In contrast to standard protective components, the SPC3...DI components feature an integrated coordination circuit. Coordination means that the highest share of the energy applied to luminaires in the form of high-voltage pulses is discharged, which in turn ensures the protective components within the LED driver are subjected to only minimal voltage loads. This coordination can be checked by carrying out a high-voltage test on the luminaires.
A decoupling inductor is also available as a separate product, which must be wired in between the protective component and the LED driver.
Type: DI-5A

Luminaire Protection Device - Type 2 and 3

For electronic devices

These protective components are fitted with an LED indicator. Once the end of the component's life has been reached, the green LED goes out and the protective component has to be replaced.
If the protective luminaire component overloads, the connected lighting circuit will be interrupted.

KEMA

Powered by $>$ DEKRA

SPC 230/10 K/i

Suitable for luminaires of protection class II
Screw terminals: 0.75-2.5 mm²
Degree of protection: IP20

Ref. No.: 142737

SPC 3/230/10 K/i

Suitable for luminaires of protection class I
Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$
Lead ground terminal: stranded conductors, $2.5 \mathrm{~mm}^{2}$, silicone insulation, length: 150 mm
Degree of protection: IP20
Ref. No.: 142738
Earthing wire with M4 ring-tongue

Ref. No.: 142742

SPC 3/230/10 K/i-IP66

4 leads: stranded conductors, $2.5 \mathrm{~mm}^{2}$,
silicone insulation, length: 150 mm
Degree of protection: IP66
Ref. No.: 142748
Ref. No.: 142746 casing with fixing lug (no KEMA approval)
Ref. No.: 142747 with isolated cable with
outer diameter approx. 12 mm (no KEMA approval)

This cut-out function makes it easier to detect the end of life of the protective component, facilitates quick replacement by maintenance staff and provides reliable protection for lighting components.
Dimensions (LxWxH): $76 \times 34 \times 27 \mathrm{~mm}$
Weight: 100 g , with integrated thermal fuse DEKRA approved acc. to EN 61643-11

AC system: TT-TN-IT
Temporary overvoltage

- (TOV)-LV: 443 V AC (5 sec.) / 443 V (120 min.)
- (TOV)-MV/HV: 1200 V AC (200 msec.)
$\left.\right|_{\text {sccr: }}: 4500 \mathrm{~A}$

Type	Ref. No.	Voltage $\begin{aligned} & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Max. load current (A)	Protection L-N (V)	level $\mid L-P E(V)$	$\begin{array}{\|l\|} \hline \text { Ipe } \\ \mu \mathrm{A} \\ \hline \end{array}$	Max. impulse voltage Uoc (V)	Discharge current* $(8 / 20 \mu s)$ IN (A) $I_{\text {max. }}(A)$		Safery max. A	Max. permitted casing temp. ${ }^{\circ} \mathrm{C}$	Fixation
SPC 230/10 K/i	142737	100-277	16	< 1500	-	-	10000	5000	10000	16	-35 to 80	M8x10
SPC 3/230/10 K/i	142738	100-277	16	< 1500	< 1800	1	10000	5000	10000	16	-35 to 80	M8×10
SPC 3/230/10 K/i	142742	100-277	16	< 1500	< 1800	1	10000	5000	10000	16	-35 to 80	M8×10
SPC 3/230/10 K/i-IP66	142748	100-277	16	< 1500	< 1800	1	10000	5000	10000	16	-35 to 80	M8×10
SPC 3/230/10 K/i-IP66	142746	100-277	16	< 1500	< 1800	1	10000	5000	10000	16	-35 to 80	lug
SPC 3/230/10 K/i-IP66	142747	100-277	16	< 1500	< 1800	1	10000	5000	10000	16	-35 to 80	M8×10

[^3]
Inrush Current Limiter ESB

Limits capacitive inrush currents of electronic ballasts and LED drivers and converters

Due to their capacitive nature, electronic operating devices generate high inrush currents. By temporarily activating a limiting resistor, the inrush current is reduced to an uncritical value (see graph below).

Several electronic devices can be connected downstream under consideration of the maximum permissible continuous current of the inrush current limiter. As a result, the load per circuit breaker $(M C B)$ can be increased by at least 2.5 fold.

The ESB thus prevents any automatic circuit breakers from being triggered or any damage from being caused to upstream relay contacts.
Switching cycles: > 10,000

ESB-6K

Casing: PC
Dimensions (LxW×H): $55 \times 28 \times 27 \mathrm{~mm}$
Weight: 61 g
Screw terminals: $0.5-1.5 \mathrm{~mm}^{2}$
VDE approved
Ref. No.: 149820
Ref. No.: 149822

Type	Ref. No.	Nominal voltage $50-60 \mathrm{~Hz}$ $\mathrm{~V} \pm 10 \%$	Power consumption W	Max. direct current A	limiting resistor Ω	Period of limitation ms	Max. permitted casing temperature $\left({ }^{\circ} \mathrm{C}\right)$	Min. permitted ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$	Fixation
ESB-6K	$\mathbf{1 4 9 8 2 0}$	$220-240$	0.25	6	20	approx. 18	80	-30	
ESB-16HS	$\mathbf{1 4 9 8 2 1}$	$220-240$	0.6	16	11.2	approx. 18	80	-30	DIN-rail
ESB-6K_1A	$\mathbf{1 4 9 8 2 2}$	$220-240$	0.25	6	440	approx. 160	80	-30	M8x10

Example using a 150 W LED driver

Brown: with ICL (ESB)
Blue: without ICL (ESB)
$1 \mathrm{~V}=1 \mathrm{~A}$

Standard Ballasts for HS and HI
 Lamps 35 to 250 W

Shape: $53 \times 69 \mathrm{~mm}$

For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Vacuum-impregnated with polyester resin
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Protection class I
tw 130
Ballasts for pulse ignition system on request

Lamp			Ballast										Capacitor	
Output W	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{aligned} & \Delta t \\ & K \end{aligned}$	Power factor λ	Energy efficiency	$\begin{aligned} & \text { Cp } \\ & \mu \mathrm{F} \\ & \hline \end{aligned}$	IN
35	HS, HI	0.53	NaHJ 35.485*	571074	230/240,50	112	86	31	0.98	60	0.40	EEI=A3	6	0.22/0.21
			NaHJ 35.638	570961	220,60	112	86	31	0.98	50	0.41	EEI=A3	5	0.23
50	HS, HI	0.76	NaH 50.486*	571077	230/240,50	112	86	36	1.07	65	0.37	EEI=A3	8	0.30/0.29
			NaH 50.654	570958	220,60	112	86	31	1.00	60	0.36	EEI=A3	8	0.31
70	HS, HI	0.98	NaHJ 70.300	570977	220,50	112	86	36	1.12	75	0.40	EEI=A3	12	0.40
			NaHJ 70.128*	571008	230, 50	112	86	36	1.12	75	0.36	EEI=A3	12	0.38
			NaHJ 70.128*	571022	230/240,50	112	86	36	1.15	75	0.36	EEI=A3	12	0.38/0.37
			NaHJ 70.128	571018	240,50	112	86	36	1.15	75	0.37	EEI=A3	12	0.37
			NaHJ 70.653	570962	220,60	112	86	36	1.05	75	0.42	EEI=A3	10	0.40
100	HS, HI	1.20	NaHJ 100.126	570997	220, 50	112	86	36	1.12	75	0.44	EEI=A3	12	0.55
			NaHJ 100.941*	570964	230/240,50	112	86	36	1.15	75	0.42	EEI=A3	12	0.55/0.53
150	HS, HI	1.80	NaHJ 150.159	571004	220,50	145	120	64	1.78	75	0.41	EEI=A3	20	0.80
			NaHJ 150.620*	571013	230,50	145	120	64	1.83	75	0.40	EEI=A3	20	0.77
			NaHJ 150.620	571019	240,50	145	120	64	1.85	75	0.40	EEI=A3	20	0.74
			NaHJ 150.679	570999	220,60	145	120	64	1.72	75	0.44	EEI=A3	16	0.80
250	HS, HI	3.00	NaHJ 250.204	571006	220,50	180	155	94	2.98	75	0.42	EEI=A3	32	1.32
			NaHJ 250.915*	570963	230,50	180	155	110	2.95	80	0.40	EEI=A3	32	1.26
			NaHJ 250.340*	570982	230/240,50	180	155	110	3.10	75	0.39	EEI=A3	32	1.26/1.21
			NaHJ 250.340	570978	240,50	180	155	110	3.10	80	0.39	EEI=A3	32	1.21
			NaHJ 250.163	571249	220,60	180	155	94	2.50	70	0.42	A2	25	1.35

[^4]
Ballasts with Thermal Cut-out for HS and HI Lamps 35 to 250 W

Shape: $53 \times 69 \mathrm{~mm}$

For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI)

Vacuum-impregnated with polyester resin With temperature switch with automatic reset Protection class I
tw 130

Lamp			Ballast											acitor
Output W	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{aligned} & \Delta t \\ & K \end{aligned}$	Power factor (λ)	Energy efficiency	Cp F	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$

Push-in terminals: 0.5-1.5 mm ${ }^{\mathbf{2}}$

35	HS, HI	0.53	NaHJ 35.209	571076	230/240,50	112	86	36	1.10	35	0.36	A2	6	0.22
			NaHJ 35.485*	571075	230/240,50	112	86	36	1.07	60	0.40	EEI=A3	6	0.22/0.21
50	HS, HI	0.76	NaHJ 70/50.157*	571081	230, 50	112	86	42	1.23	55	0.37	EEI=A3	8	0.30
70	HS, HI	0.98								70	0.37	EEI=A3	12	0.38
70	HS, HI	0.98	NaHJ 70.128*	571009	230,50	112	86	36	1.12	75	0.36	EEI=A3	12	0.38
			NaHJ 70.226	571011	230, 50	112	86	41	1.28	60	0.37	A2	12	0.38
			NaHJ 70.158*	570995	230/240,50	112	86	36	1.15	70	0.36	EEI=A3	12	0.38/0.37
150	HS, HI	1.80	NaHJ 150.995*	570994	230/240,50	145	120	64	1.84	75	0.40	EEI=A3	20	0.77/0.74

Screw terminals: $\mathbf{0 . 5 - 2 . 5} \mathbf{~ m m}^{\mathbf{2}}$

50	HS, HI	0.76	$\mathrm{NaH} 50.486^{*}$	571078	230/240,50	112	86	36	1.07	65	0.37	EEI=A3	8	0.30
50	HS, HI	0.76	NaHJ 70/50.695*	571085	230/240, 50	112	86	48	1.23	50	0.37	EEI=A3	8	0.30/0.29
70	HS, HI	0.98								70	0.37	EEI=A3	12	0.38/0.37
70	HS, HI	0.98	NaHJ 70.226	571012	230,50	112	86	41	1.28	60	0.37	A2	12	0.38
			NaHJ 70.128*	571010	230, 50	112	86	36	1.12	75	0.36	EEI=A3	12	0.38
			NaHJ 70.158*	570975	230/240, 50	112	86	36	1.15	70	0.36	EEI=A3	12	0.38/0.37
			NaHJ 70.128*	571020	230/240,50	112	86	36	1.15	70	0.36	EEI=A3	12	0.38/0.37
100	HS, HI	1.20	NaHJ 100.213	571031	230/240, 50	112	86	45	1.38	65	0.41	A2	12	0.55/0.53
			NaHJ 100.941*	571028	230,50	112	86	36	1.14	75	0.42	EEI=A3	12	0.55
			NaHJ 100.941*	570980	230/240,50	112	86	36	1.15	75	0.42	EEI=A3	12	0.55/0.53
100	HS, Hi	1.20	NaHJ 150/100.973*	571244	230, 50	145	120	75	2.02	55	0.41	A2	12	0.55
150	HS, Hi	1.80								75	0.41	EEI=A3	20	0.77
150	HS, HI	1.80	NaHJ 150.166	571025	230/240,50	180	155	110	3.08	50	0.40	A2	20	0.77/0.74
			NaHJ 150.620*	571015	230,50	145	120	64	1.83	75	0.40	EEI=A3	20	0.77
			NaHJ 150.995*	570974	230/240,50	145	120	64	1.84	75	0.40	EEI=A3	20	0.77/0.74
			NaHJ 150.620*	571023	230/240,50	145	120	64	1.84	75	0.40	EEI=A3	20	0.77/0.74
250	HS, HI	3.00	NaHJ 250.915*	570993	230, 50	180	155	110	2.95	80	0.40	EEI=A3	32	1.26

[^5]
Ballasts for HS and HI Lamps 250 to 1000 W

Shape: 91x104 mm

For high pressure sodium lamps (HS), metal halide lamps (HI) and ceramic discharge lamps (C-HI) Vacuum-impregnated with polyester resin Screw terminals: 0.75-2.5 mm² Protection class |
tw 130

t_{A}

Lamp			Ballast										Cap	citor
Output W	Type	Current A	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & \text { V, Hz } \end{aligned}$	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{aligned} & \Delta t \\ & K \end{aligned}$	Power factor λ	Energy efficiency	$\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{N} \\ \mathrm{~A} \\ \hline \end{array}$
250	HS, HI	3.00	NaHJ 250.727*	571042	230,50	133	120	42	3.30	75	0.39	EEI=A3	32	1.26
			NaHJ 250.727	571049	240,50	133	120	42	3.40	75	0.39	EEI=A3	32	1.21
400	HS, HI	4.45	NaHJ 400.006	571044	220,50	148	135	62	4.57	75	0.44	A2	45	2.00
			NaHJ 400.006	571047	230,50	148	135	62	4.57	80	0.44	A2	45	1.95
			NaHJ 400.737	571054	230/240,50	148	135	62	4.7	75	0.45	A2	45	2.00/1.95
			NaHJ 400.737	571050	240,50	148	135	62	4.61	80	0.43	A2	45	1.90
			NaHJ 400.012	571057	220,60	148	135	68	4.45	75	0.44	A2	40	2.00
600	HS	6.20	NaH 600.010	571045	220,50	173	160	96	6.78	75	0.44	A2	65	2.90
			NaH 600.005	571055	230/240,50	173	160	96	6.89	75	0.44	A2	65	2.90/2.85
			NaH 600.140	571058	220,60	173	160	96	6.79	75	0.46	A2	55	3.00
1000	HS	10.30	NaHJ 1000.089	571043	220, 50	248	235	160	11.31	75	0.47	A2	100	5.1
	HI	9.50								75	0.51	A2	85	5.0
	HS	10.30	NaHJ 1000.089	571046	230,50	248	235	160	11.4	75	0.45	A2	100	5.1
	HI	9.50								75	0.49	A2	85	5.0
	HS	10.30	NaHJ 1000.089	571051	230/240,50	248	235	160	11.57	75	0.45	A2	100	5.1
	H	9.50								75	0.46	A2	85	5.0
	HS	10.30	NaHJ 1000.089	571048	240,50	248	235	160	11.45	75	0.42	A2	100	4.8
	H	9.50								75	0.46	A2	85	4.9
	HS	10.30	NaHJ 1000.089	571056	220,60	248	235	160	11.13	75	0.46	A2	100	5.1
	HI	9.50								75	0.50	A2	85	5.0

* Ballasts without CE marking for replacements or markets outside of the EU

With Thermal Cut-out

Thermal cut-out with automatic reset

Lamp			Ballast										Capacitor	
Output W	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	C mm	Weight kg	$\begin{aligned} & \Delta t \\ & K \end{aligned}$	Power factor λ	Energy efficiency	$\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}\right.$
250	HS, HI	3.00	NaHJ 250.727*	571052	230/240,50	133	120	42	3.40	75	0.39	EEI=A3	32	1.26/1.21
400	HS, HI	4.45	NaHJ 400.737	571053	230/240,50	148	135	62	4.7	75	0.43	A2	45	1.95/1.90

[^6]
Ballasts for
 HI Lamps
 up to 2500 W

Shape: $150 \times 150 \mathrm{~mm}$
For metal halide lamps (HI)
Vacuum impregnated with polyester resin
Screw terminals: $0.75-4 \mathrm{~mm}^{2}$
For luminaires of protection class I
tw 130

For Short Arc Lamps

Lamp			Ballast										Capacitor	
Output W	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	b	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	Weight kg	$\begin{array}{\|l\|l\|} \hline \Delta t \\ K \\ \hline \end{array}$	Power factor λ	Energy efficiency	$\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$
2000	HI	8.8	J 2000.71	554303	380/400,50	122	175	200	15	75	0.60	A2	37	6
			J 2000.72	554304	380/400/415,50	122	135	160	14	70	0.58	A2	37	6
			J 2000.73	554305	380,60	122	175	200	15	75	0.53	A2	30	6
2000	H	10.3/11.3	JD 2000.81	554270	380/400,50	122	175	200	15	80	0.53	A2	60	6
			JD 2000.81	554306	380/400/415,50	122	135	160	14	75	0.52	A2	60	6
			JD 2000.83	554283	380, 60	122	175	200	15	75	0.54	A2	50	6
2000	HI	12.2	JD 2000II. 91	554307	380/400,50	122	175	200	16	80	0.46	A2	70	6
			JD 2000II. 92	554308	380,60	122	175	200	16	75	0.45	A2	60	6
2000	HI	16.5	JD 2000I. 85	554309	230/240,50	122	135	160	14	80	0.57	A2	125	10.5
			JD 20001.86	554310	220,60	122	135	160	14	80	0.57	A2	105	10

For Short Arc Lamps 1200 and 2500 W

2500	HI	25.6	J 2500.96	554312	208, 60	122	175	200	16	-	0.44	A2	260	12.3
					230/245, 50							A2		

Ballast Units for HS and HI Lamps 1000 to 2000 W

Encapsulated in a plastic casing

For high-pressure sodium vapour lamps (HS) and metal halide lamps (HI)
Fully encapsulated ballast unit in a self-extinguishing, fibre-glass-reinforced polyamide casing consisting of a ballast, capacitor, fuse and a ready-to-use, pre-wired connection terminal.
Cable feed using a PG thread fitting

Degree of protection: IP65

With double insulation
Screw terminals: $0.75-10 \mathrm{~mm}^{2}$

Protection class II

tw 130

Lamp				Ballast unit									
Output W	Type	Current A	Mains current (A)	Type	Ref. No.	Voltage AC V, Hz	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{d} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	Power factor λ	Energy efficiency
230/240 V, 50 Hz and 380/400/415 V, 50 Hz													
1000	HS	10.3/11.3	5.75	VNaHJ 1000.75	554313	230/240,50	288	217	-	220	15	> 0.90	A2 A2
	H	9.5	4.9										
2000	H	8.8/9.2	5.7	VJ 2000.76	554314	380/400/415,50	320	217	225	225	21	> 0.90	A2
		10.3/11.3	6.0	VJD 2000.77	554315	380/400/415,50	320	220	225	225	23	> 0.90	A2
		12.2	6.0	VJD 20001.78	554316	380/400/415,50	320	220	225	225	25	> 0.90	A2

$220 \mathrm{~V}, \mathbf{6 0 ~ H z}$ and $\mathbf{3 8 0} \mathbf{V}, \mathbf{6 0 ~ H z}$

1000	HS	10.3/11.3	5.75	VNaHJ 1000.75	554904	220,60	288	217	-	220	15	> 0.90	A2
	Hi	9.5	4.9										
2000	HI	8.8/9.2	5.7	VJ 2000.76	554905	380,60	320	220	225	225	21	> 0.90	A2
		10.3/11.3	6.0	VJD 2000.77	554906	380,60	320	220	225	225	23	> 0.90	A2
		12.2	6.0	VJD 20001.78	554909	380, 60	320	220	225	225	25	> 0.90	A2

Ballasts for HM and HI Lamps 50 to 400 W

Shape: $53 \times 69 \mathrm{~mm}$

For mercury vapour lamps (HM) and metal halide lamps (HI) with ignition voltage 1 kV Vacuum-impregnated with polyester resin Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Protection class I
tw 130

Lamp			Ballast										Capacitor	
Output W	Type	Current A	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & \text { V, Hz } \end{aligned}$	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	b	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight kg	$\begin{aligned} & \Delta t \\ & K \end{aligned}$	Power factor λ	Energy efficiency	$\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \end{aligned}$	IN
50	HM	0.61	Q 80/50.551*	570968	230,50	112	86	31	1.00	55	0.43	EEI=A3	7	0.27
80	HM	0.80								70	0.51	EEI=A3	8	0.41
80	HM	0.80	Q 80.510	570965	240,50	112	86	31	1.00	60	0.48	EEI=A3	8	0.40
			Q 80.584	570970	220,60	112	86	31	0.91	55	0.51	EEI=A3	7	0.43
80	HM	0.80	Q 125/80.611*	571080	230, 50	112	86	42	1.22	50	0.49	EEI=A3	8	0.41
125	HM	1.15								70	0.54	EEI=A3	10	0.60
125	HM	1.15	Q 125.549	570976	220, 50	112	86	31	0.94	75	0.56	EEI=A3	10	0.63
			Q 125.568*	570969	230, 50	112	86	36	1.10	75	0.54	EEI=A3	10	0.60
			Q 125.512	570966	240, 50	112	86	36	1.10	75	0.51	EEI=A3	10	0.58
			Q 125.598	570981	220,60	112	86	31	0.94	75	0.57	EEI=A3	10	0.65
250	HM	2.13	Q 250.513	570967**	220,50	145	120	64	1.84	75	0.58	A2	18	1.26
			Q 250.528	570972**	230,50	145	120	64	1.86	75	0.56	A2	18	1.20
			Q 250.703	570996**	240,50	145	120	64	1.87	75	0.53	A2	18	1.15
			Q 250.606	571003**	220,60	145	120	64	1.75	75	0.58	A2	15	1.30
400	HM	3.25	Q 400.616	571000**	220,50	180	155	110	2.94	75	0.60	EEI=A3	25	2.00
			Q 400.612	570971**	230,50	180	155	110	3.00	75	0.56	A2	25	1.90
			Q 400.669	570973**	240,50	180	155	110	3.07	75	0.54	A2	25	1.85
			Q 400.613	570998**	220,60	180	155	94	2.54	75	0.60	A2	25	2.00

* Ballasts without CE marking for replacements or markets outside of the EU
** Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI $1000 / 1 \mathrm{~K}$

Ballasts for HM and HI Lamps 1000 W

Shape: 91x 104 mm

For mercury vapour lamps (HM) and metal halide lamps (HI) with ignition voltage 1 kV
Vacuum-impregnated with polyester resin
Screw terminals: 0.75-2.5 mm²
Protection class I
tw 130

Lamp			Ballast										Capacitor	
Output W	Type	Current A	Type	Ref. No.	Voltage AC V, Hz	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{c} \\ \mathrm{~mm} \\ \hline \end{array}$	Weight kg	$\begin{array}{\|l\|} \hline \Delta t \\ K \\ \hline \end{array}$	Power factor λ	Energy efficiency	$\begin{aligned} & \mathrm{Cp} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{~A} \end{aligned}$
1000	HM	7.50	Q 1000.097	571257*	220,50	173	160	96	6.97	75	0.61	A2	60	4.80
			Q 1000.096	571255*	230,50	173	160	96	6.94	75	0.60	A2	60	4.80
			Q 1000.145	571256*	240,50	173	160	96	6.90	75	0.58	A2	60	4.60
			Q 1000.311	$571254 *$	220,60	173	160	96	6.74	75	0.61	A2	50	5.00

[^7]
SUPERIMPOSED AND PULSE IGNITION

ELECTRONIC IGNITORS

Superimposed ignitors

Superimposed ignitors work independently of ballasts and generate defined ignition pulses during every half-wave within the stipulated voltage ranges. As the mains frequency only plays a subordinate role, these systems work equally well at 50 Hz and 60 Hz .

Superimposed ignitors should be mounted near the lampholder. The clearance needed between the ignitor and the lamp is determined by the respective maximum load capacitance, which is specified for each ignitor in the technical details. The capacitive load of the cable is dependent on its physical properties and wiring layout; this value usually ranges between $70-100 \mathrm{pF}$ per metre.

Pulse ignitors

As pulse ignitors use the winding of an inductive ballast to generate the requisite pulse voltage, such ballasts must be designed to withstand these high ignition voltages.

On the following pages, Vossloh-Schwabe presents an extensive range of ignitors for all areas of application.

2 Ignitors and Accessories for Discharge Lamps
Electronic superimposed ignitors 24-32
Pulse ignitors 33-34
Electronic power switches 35
Switch units for electronic operating devices with 1-10 V interface 36
Start-up switches 37
Electronic discharge units 38
Technical details for discharge lamps 78-1 19
General technical details 228-236
Glossary 237-239

Electronic
 Superimposed
 Ignitors
 for HS Lamps
 up to 70 W

Standard version or with automatic switch-off For high pressure sodium lamps (HS) and ceramic discharge lamps C-HI-TT/ET with base E27
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II

Al casing

PC casing - K

PC casing - K D20

PC casing - with push-in terminals

Type

[^8]

[^9]
Electronic
 Superimposed Ignitors
 for HS Lamps
 70 (DE) to 250 W and HI Lamps 35 to 250 W

Standard version or with automatic switch-off For high pressure sodium lamps (HS), metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II

Al casing

PC casing - K

PC casing - K D20

PC casing - with push-in terminals

Type

[^10]* With IPP technology

Electronic
Superimposed

Ignitors

for HS Lamps
70 (DE) to 400 W
and HI Lamps

35 to 400 W

Standard version or with automatic switch-off For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$

Screw terminals: 0.75-4 mm²
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time $\text { sec. } / \mathrm{Hz}$	Casing d (\varnothing) mm	a mm	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight g
Aluminium casing (Al)													
Z 400 S	140427	220-240	5	< 3	< 25	4-5	20-100	-	45	76	-	-	250
Z 400 S D20	141583*	220-240	5	< 3	<25	4-5	20-100	1216/50-60	45	90	-	-	280

[^11]
Electronic

Superimposed Ignitors
for HS Lamps
70 (DE) to 400 W and HI Lamps 35 to 400 W

Standard version or with automatic switch-off
Compact shape
For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Ignition voltage: 4-5 kV
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$ Fastening: male nipple with pre-assembled washer and nut
For luminaires of protection class I and II
For luminaires of protection class I
(140594, 147707)

Al casing

PC casing - K

PC casing - K D20

PC casing - with push-in terminals

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time $\mathrm{sec} . / \mathrm{Hz}$	Casing d (\varnothing) mm		$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	Weight

Aluminium casing (Al) with screw terminals: $\mathbf{0 . 7 5 - 4} \mathbf{~ m m}^{\mathbf{2}}$

Z 400 M	140594	220-240	5	< 3	<35	4-5	20-50	-	35	76	-	-	140
Z 400 M VS-Power	147707**	220-240	5	<3	< 35	4-5	20-50	-	35	76	-	-	140
Z 400 M S	140693	220-240	5	< 3	< 35	4-5	20-50	-	35	76	-	-	140

Plastic casing (PC) with screw terminals: 0.75-4 mm ${ }^{\mathbf{2}}$

Z 400 M K	140597	220-240	5	< 3	< 35	4-5	20-50	-	-	78	34	27	130
Z 400 M K VS-Power	142897**	220-240	5	< 3	< 35	4-5	20-50	-	-	78	34	27	130
Z 400 M K D20	141582*	220-240	5	< 3	< 35	4-5	20-50	1216/50-60	-	80	34	30	145

Plastic casing (PC) with push-in terminals: $\mathbf{0 . 5 - 2 . 5} \mathbf{~ m m}^{\mathbf{2}}$
Z 400 M K D20 $\quad \mathbf{1 4 2 3 7 0}^{*}$
Recommended for outdoor lighting

* With IPP technology
** Not suitable for C-HI lamps

Electronic

Superimposed

Ignitors
 for HS Lamps 600 and 750 W

Standard version
For high pressure sodium lamps (HS)
Phasing of the ignition voltage
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Screw terminals: 0.75-4 mm²
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II

Al casing

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time $\text { sec. } / \mathrm{Hz}$	Casing d ($\varnothing \mid$ mm	mm	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}\right.$	Weight g

Electronic
Superimposed
Ignitors for HS and
HI Lamps 250 to 1000 W

Standard version or with automatic switch-off For high pressure sodium lamps (HS)
and metal halide lamps (HI)
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$

$$
\text { (Z } \left.1000 \text { S: } 0.75-4 \mathrm{~mm}^{2}\right)
$$

Fastening: male nipple with pre-assembled washer and nut
For luminaires of protection class I and II

2

Al casing

Z 1000 TOP

[^12]| Z 1000 S | 140430 | 220-240 | 12 | < 6 | < 35 | 4-5 | 20-100 | - | 50 | 80 | - | - | 340 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Z 1000 TOP | 140607** | 220-240 | 12 | < 6 | < 35 | 4-5 | 20-100 | - | - | 83 | 83 | 68 | 620 |
| Z 1000 S D20 | 141584* | 220-240 | 12 | < 6 | < 35 | 4-5 | 20-100 | 1216/50-60 | 50 | 80 | - | - | 340 |

Electronic
Superimposed
Ignitors for HS and
HI Lamps
up to 1000 W
Standard version
For high pressure sodium lamps (HS)
and metal halide lamps (HI)

For long lead lengths

Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Screw terminals: 0.75-2.5 mm²
Fastening: male nipple with pre-assembled
washer and nut

Al casing

For HS and HI lamps 150 to 1000 W
Phasing of the ignition voltage: $60-90^{\circ} \mathrm{el}$
For luminaires of protection class I

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time sec./Hz	Casing d (\varnothing) mm		$\mathrm{l}_{\mathrm{b}}^{\mathrm{mm}}$	$\left\lvert\, \begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}\right.$	Weight g

Aluminium casing (Al)

Z 1000 L	140471*	220-240	12	<6	< 35	4-5	20-2000	-	50	97			-	340

* Not suitable for HI lamps types NDL, WDL or for HS lamps types S, de-Luxe, Comfort or similar

For HS lamps 600 to 1000 W/400 V and HI lamps 1000 W/400 V
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
For luminaires of protection class I and ||

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time sec./Hz	Casing d (\varnothing) mm	a mm	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight g
Aluminium casing (AI)													
Z $1000 \mathrm{~S} / 400 \mathrm{~V}$	140496	380-415	6	< 3.3	< 28	4-5	20-2000	-	45	84	-	-	295

Electronic

Superimposed

Ignitors for
 Projection Lamps up to 1200 W

Standard version
For high-pressure discharge lamps
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$
Fastening: male nipple with pre-assembled washer and nut
For luminaires of protection class I

Al casing

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time sec. $/ \mathrm{Hz}$	Casing d (\varnothing) mm	a mm		c mm	Weight g
Aluminium casing (Al)													
Z 1200/2.5	140608*	220-240	15	< 7.5	< 40	2-2.5	20-200	-	50	80	-	-	330
Z 1200/9	140609**	220-240	15	< 10	< 40	7-8	20-50	-	50	135	-	-	650

[^13]
Electronic

Superimposed

Ignitors
 for HI Lamps
 up to 3500 W

Standard version
For metal halide lamps (HI)
Phasing of the ignition voltage:
$60-90^{\circ} \mathrm{el}$ and $240-270^{\circ} \mathrm{el}$
Max. permitted casing temperature: $105^{\circ} \mathrm{C}$
Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$
Fastening: male nipple with pre-assembled washer and nut
For luminaires of protection class I and II

B

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Max. lamp current A	Internal loss W	Inherent heating K	Ignition voltage kV	Load capacity pF	Switch-off time sec. $/ \mathrm{Hz}$	Drawing	Casing d (\varnothing) mm	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$		c mm	Weight g
Aluminium casing (AI)														
Z 2000 S	140432	220-240	20	< 6	< 30	4-5	20-100	-	A	65	96	-	-	640
Z 2000 S/400 V	140497	380-415	12.7	< 5	< 32	4-5	20-2000	-	B	50	88	-	-	340
Z 3500 S/400 V	140499	380-415	20	< 7	< 35	4-5	20-100	-	A	65	96	-	-	650

Pulse Ignitors for HS and HI Lamps up to 1000 W

With automatic switch-off
For high pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
Max. permitted casing temperature: $95^{\circ} \mathrm{C}$
Screw terminals: 0.75-2.5 mm²
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I
This pulse ignitor is only for use with ballasts that have a dedicated tapping, as this determines the size of the ignition voltage.

Al casing

PC casing

For HS lamps 50 to 1000 W,
HI lamps 35 to 1000 W and C-HI lamps 35 to 400 W

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Number of ignition pulses per mains period	Ignition voltage kV	Load capacity pF	Programmed switch-off time sec./ Hz			c mm	Weight g
Plastic casing (PC)										
PZ 1000 K D20	142784*	220-240 $\pm 10 \%$	≥ 2	1.8-2.3/4-5	20-1000	1216/50-60	74	34	27	100

For HS lamps 600 to 1000 W/400 V and HI lamps 1000 W/400 V

Type	Ref. No.	$\begin{aligned} & \hline \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	Number of ignition pulses per mains period	Ignition voltage kV	Load capacity pF	Programmed switch-off time sec./Hz	Casing d (\varnothing) mm	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight g

Aluminium casing (Al)

[^14]
Pulse Ignitors for HS Lamps 50 to 1000 W

Standard version
For standard high pressure sodium lamps (HS)
Max. permitted casing temperature: $95^{\circ} \mathrm{C}$
Screw terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Fastening: male nipple with pre-assembled
washer and nut

For luminaires of protection class I

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Number of ignition pulses per mains period	Ignition voltage kV	Load capacity pF	Programmed switch-off time sec.	Casing d (\varnothing) mm	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \end{aligned}$	Weight g
Plastic casing (PC)											
PZS 1000 K	140613	220-240	approx. 1/sec.	approx. 4	20-4000	-	-	50	28	27	50

Not suitable for HS lamps types Plus, Super, XL, HO
Suitable ballasts (type: $\mathrm{NaH} . . . \mathrm{P}$) are available on request

Pulse Ignitors for HI Lamps

250 to 2000 W,

Ignition Voltage up to $\mathbf{1} \mathbf{k V}$
Standard version
For metal halide lamps (HI)
with ignition voltage of 0.9 kV
Max. permitted casing temperature: $95^{\circ} \mathrm{C}$
Screw terminals: 0.5-2.5 mm²
Fastening: male nipple with pre-assembled

washer and nut
For luminaires of protection class I

Type	Ref. No.	Voltage AC $50-60 \mathrm{~Hz}$ V	Number of ignition pulses per mains period	Ignition voltage kV	Load capacity pF	Programmed switch-off time sec.	Casin a mm	mm	c mm	Weight g
Plastic casing (PC)										
PZI 1000/1 K	140617	220-240	≥ 1	0.7-0.9	max. 10000	-	57	28	27	50

Electronic

Power Switches

for HS Lamps up to 600 W and HM Lamps up to 700 W

PU 12 K/PR 12 KD/PR 12 K LC
For high pressure sodium lamps (HS) and mercury vapour lamps (HM) For power reduction by using ballasts with multiple voltage tapping and superimposed ignitors

PR $12 \mathrm{~K} L C$ and PR 12 K D are also suitable for
power switching of LED drivers and electronic ballasts.
Casing: PC
PU 120 K
Max. permitted casing temperature tc: $80^{\circ} \mathrm{C}$
Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$
Fastening: male nipple with pre-assembled
washer and nut
For luminaires of protection class I and II

Circuit diagrams for power reduction
see pages 62-64.

PU 121 K

Advantages of PR 12 K LC

- intelligent, auto-adaptive concept
- eliminates the time-consuming task of continually adjusting the times of power-reduced operation to suit constantly changing day-night cycles
- removes the need for making adjustments due to daylight-saving times
- easy programming via dial
- no additional control line necessary
- optimal suitable for the supplementary integration into existing luminaires
- suitable for luminaires of protection class I and II

Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & \text { V, Hz } \end{aligned}$	Max. current A/ λ	A / λ	Inherent heating K	Integrated delay switching	Control phase for power reduction (circuitry logic)	Casing a mm	$\begin{aligned} & \mathrm{ng} \\ & \mathrm{~b} \\ & \mathrm{~mm} \end{aligned}$	c	Weight g
Power reduction with control phase											
PU 12 K	140621	230,50 / 220,60	8/0.5	12/1	< 25	-	disconnect or connect	74	34	27	100
PU 120 K	140622*	230,50 / 220,60	8/0.5	12/1	< 10	327 sec .	disconnect	74	34	27	100
PU 121 K	140623*	230,50 / 220,60	8/0.5	12/1	< 25	327 sec.	connect	74	34	27	100
Power reduction without control phase											
PR 12 KLC ****	142170**	$\begin{aligned} & 220-230 \pm 10 \%, 50 \\ & 220 \pm 10 \%, 60 \end{aligned}$	8/0.5	12/1	< 12	selectable	without control phase	76	34	31	100
PR 12K ${ }^{\text {***** }}$	142150***	$\begin{aligned} & 220-230 \pm 10 \%, 50 \\ & 220 \pm 10 \%, 60 \end{aligned}$	8/0.5	12/1	< 12	selectable	without control phase	76	34	31	100

[^15]
Switch Units for Electronic Operating Devices with 1-10 V Interface

Vossloh-Schwabe's switch units are designed to enable one-step power reduction of lamps (FL, CFL, LED, HS, HI and $\mathrm{C}-\mathrm{HI}$ I with the help of the respective electronic ballast or converter.

To this end, the switch units utilises the $1-10 \mathrm{~V}$ interface of the control gear unit. The switch unit is mainly intended for outdoor luminaires in systems with or without a control phase.

Shape: $56 \times 28 \times 27 \mathrm{~mm}$
Casing: PC
Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$
Max. permissible casing temperature $t_{c}: 80^{\circ} \mathrm{C}$ Min. permissible ambient temperature ta: $-30^{\circ} \mathrm{C}$ Fastening: plastic male nipple with pre-assembled washer and nut

Circuit diagram SU 1-10 V K

Power reduction SU 1-10 V K for lighting systems featuring an Lst control phase
The switch unit employs a positive switching to reduce power, i.e. power is reduced when the control phase is switched off (LST $=0 \mathrm{~V}$).
The $1-10 \mathrm{~V}$ interface of the electronic ballast is addressed at the moment that power reduction is effected.

Power reduction PR 1-10 V K LC for

 lighting systems without a control phaseThis switch unit can be used to effect power reduction in lighting systems that do not feature a control phase.
The $1-10 \mathrm{~V}$ interface is addressed on the basis of the fundamental operating principle used by Vossloh-Schwabe's PR 12 K LC power switch (details of which can be made available on request). This power switch is capable of determining the starting time of reduced-power operation over the measured operating time of a lighting system. As a result, it is no longer necessary to spend valuable time modifying the power-reduction unit to suit the continually changing day-night cycle; changing the clocks in line with daylight saving measures in the summer and winter is equally unnecessary. The $1-10 \mathrm{~V}$ interface of the electronic ballast is addressed as soon as the system is switched to reduced power.

Circuit diagram PR 1-10 V K LC

Type	Ref. No.	Control voltage LST $\mathrm{V}, 50 / 60 \mathrm{~Hz}$	Externally (on site) connected resistor (Rext.) $\mathrm{k} \Omega(\mathrm{min} . \mathrm{O} .1 \mathrm{~W})$	Self-heating K	Weight g
For lighting systems with control phase					
SU 1-10 VK $1 \mathbf{1 4 9 9 9 2}$	$220-240 \mathrm{~V} \pm 10 \%$	$1-70$	<10	50	
For lighting systems without control phase					
PR 1-10 V K LC	$\mathbf{1 4 9 9 9 3}$	-	$1-70$	<10	50

Start-up Switches for
 HS and HI Lamps 35 to 1000 W and HM Lamps 50 to 700 W

discharge lamps and also after a brief interruption of the power supply until the high-pressure discharge lamps are restarted

For mercury vapour lamps (HM),
high-pressure sodium lamps (HS),
metal halide lamps (HI) and
ceramic discharge lamps (C-HI)
For HS, HI and $\mathrm{C}-\mathrm{HI}$ lamps only if used together with a superimposed ignitor Nominal voltage/frequency:
$220-230 \mathrm{~V} \pm 10 \% / 50-60 \mathrm{~Hz}$
$240 \mathrm{~V} \pm 10 \% / 50 \mathrm{~Hz}$
Max. permitted casing temperature $\mathrm{tc}_{\mathrm{c}}: 85^{\circ} \mathrm{C}$
Screw terminals: 0.75-2.5 mm²
Fastening: male nipple with pre-assembled washer and nut
Max. wattage of incandescent lamp: 1000 W
Automatic switch-off at 60% of the discharge
lamp's luminous flux

Circuit for HM lamps

AS 1000 K
Casing: PC
Weight: 100 g
Internal loss: < 0.8 W
Inherent heating: $<10 \mathrm{~K}$
Type: AS 1000 K
Ref. No.: 140627

The time diagram shows some typical switching examples of a luminaire equipped with a highpressure discharge lamp, incandescent lamp and start-up switch AS 1000 K.

During the ignition and start-up period, the start-up switch activates an incandescent lamp to provide a basic level of lighting. After a brief interruption in the supply voltage during the re-ignition of the discharge lamp, the integrated control electronics also bridges the phase of darkness by switching on the auxilliary lighting. The incandescent lamp is automatically switched off when the discharge lamp has achieved a sufficient luminous flux (approx. 60\%).

Circuit for HS and HI lamps

Electronic Discharge Units for Parallel Connected Capacitors 0.1 to $100 \boldsymbol{\mu F}$

On luminaires with parallel compensation and designed for plug connection to the mains supply, the plugs retain their charge for a relatively long time after disconnection from the power supply. The discharge resistors built into the compensation capacitor are designed for stationary lamps and when disconnected from the mains permit a voltage reduction to 50 V after 1 minute at the earliest.

According to European standard EN 60598-1, the compensation capacitor on mobile lamps must be discharged to 34 V within 1 second. Until now so-called discharge chokes built like conventional ballasts have been used for this purpose. These conventional discharge chokes are connected in parallel to the compensation capacitor and after disconnection from the power supply rapidly discharge the capacitor owing to their low ohmic resistance.

In their rated operating conditions, conventional discharge chokes exhibit a considerable inductive reactance which diminishes the effect of the compensation capacitor particularly if it has a low capacitance.

Furthermore, conventional discharge chokes cause considerable losses and feature high weight.

CE 50

All electronic, wear resistant switching element
Casing: aluminium
Nominal voltage: 34-264 V
Nominal frequency: $50-60 \mathrm{~Hz}$
Internal loss: < 0.5 W
Inherent heating: < 6 K
Max. permitted casing temperature: $95^{\circ} \mathrm{C}$
Push-in terminals: $1 \mathrm{~mm}^{2}$
Fastening: male nipple with pre-assembled washer and nut
Weight: 40 g
Type: CE 50
Ref. No.: 140537

With the aid of the electronic discharge unit CE 50, it is possible to discharge a capacitor with a capacitance of up to $100 \mu \mathrm{~F}$ to 34 V within 1 second, i.e. within the time specified in EN 60598-1.

Thanks to its high reliability, low inherent losses, small dimensions and low weight, the CE 50 represents an inexpensive solution to the problem of capacitor discharge.

THERMOPLASTICS AND PORCELAIN

THE RIGHT MATERIAL MIX SPELLS A DECISIVE ADVANTAGE

The lampholders presented in this chapter are designed for highpressure discharge lamps, for which high ignition voltages and high starting currents are characteristic. High temperatures can also occur with higher lamp outputs.

Vossloh-Schwabe therefore attaches great importance to ensuring casings, contacts and cables are made of high-grade materials.

Owing to the high ignition voltages, these lampholders are also governed by stricter requirements regarding creepage and air clearance distances.

When operating high-pressure discharge lamps with E27 and E40 Edison bases, care must be taken to ensure that the respective lampholders are approved for use with discharge lamps. Lampholders that are suitable in this respect are marked with " 5 kV ".

Lampholders with E26 and E39 bases and UL-approved wiring can be found under www.unvlt.com/products/legacy/
lampholders.

2 Lampholders for Discharge Lamps
E27 lampholders 42-44
E40 lampholders 44-46
GY9.5 lampholders 46
G12 lampholders 46-47
RX7s lampholders 47-49
K 12x30s lampholders 49
K12s-7 support 49
Technical details for discharge lamps 50-119
General technical details 228-236
Glossary 237-239

E27 Lampholders

For discharge lamps with base E27

E27 lampholder, for cover caps (see p. 186-188)
Profiled shape, external thread 40×2.5 IEC 60399
Nominal rating: 4/250/5 kV
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: 15/16.5 g, unit: 500 pcs.
Type: 64719
Ref. No.: $\mathbf{5 0 5 7 2 0}$ LCP, black, T270

E27 lampholder, for cover caps (see p. 186-188)
Profiled shape, plain
Nominal rating: 4/250/5 kV
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: 15 g , unit: 500 pcs.
Type: 64770
Ref. No.: $\mathbf{5 0 5 0 1 4}$ LCP, black, T270

E27 lampholders

Casing: porcelain, white, T210
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Oblong holes for screws M4
Weight: 65/67.7 g, unit: 200 pcs.
Type: 62600

Ref. No.: 102635

Type: 62601 with lamp safety catch

Ref. No.: 102637

E27 lampholder

Casing: porcelain, white, T210
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Threaded bushes for screws M3
Weight: 69.3 g , unit: 200 pcs.
Type: 62622
Ref. No.: 108416

E27 lampholders
Casing: porcelain, white, T210
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Oblong holes for screws M4, length max. 15 mm
Weight: $106.8 / 103.9 \mathrm{~g}$, unit: 100 pcs.
Type: 62104

Ref. No.: 102615

Type: 62105 with lamp safety catch

Ref. No.: 102617

E27 lampholders

Casing: porcelain, white, T210
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing bracket with slot for screws M5
Weight: 113 g , unit: 100 pcs.
Type: 62110

Ref. No.: 106585

Type: 62111 with lamp safety catch

Ref. No.: 109568

E27 lampholders
Casing: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 60.6 g , unit: 200 pcs.
Type: 62050

Ref. No.: 102599

Type: 62010 with lamp safety catch (with spring)

Ref. No.: 102577

Type: 62009 with lamp safety catch (with crushing)

Ref. No.: 544605

E27 lampholder

Casing: porcelain, white, T270
Nominal rating: $4 / 250 / 5 \mathrm{kV}$
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fastening bushes for screws M3
Weight: 66.3 g , unit: 200 pcs.
Type: 62015

Ref. No.: 102582

E27 lampholder, one-piece
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 60.5 g , unit: 200 pcs.
Type: 62070
Ref. No.: 543304

2

Lampholders for Discharge Lamps

E27 lampholder, for cover caps (see page 186-188)
Casing: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 66.5 g , unit: 150 pcs .
Type: 62310
Ref. No.: 102624

E27 lampholder
Casing: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing oblong holes for screw M4
Weight: 66.5 g , unit: 200 pcs.
Type: 62370

Ref. No.: 543303

E40 Lampholders

For discharge lamps with base E40

Nominal rating: $18 / 500 / 5 \mathrm{kV}$
Screw terminals: $1.5-4 \mathrm{~mm}^{2}$
Spring loaded central contact

E40 lampholders

Casing: PPS, black, T240
Oblong holes for screws M5
Weight: $111.7 / 112.1 \mathrm{~g}$, unit: 40 pcs.
Type: 12600/12601
Ref. No.: 400913
Ref. No.: 400914 with lamp safety catch
With steel thread
Ref. No.: 533428
Ref. No.: 533429 with lamp safety catch

E40 lampholders
Casing: PPS, black, T240
Fixing bracket with slots for screws M5
Weight: 122.3/122.7 g, unit: 40 pcs.
Type: 12610/12611

Ref. No.: 400915

Ref. No.: 400916 with lamp safety catch
With steel thread
Ref. No.: 533430
Ref. No.: 533431 with lamp safety catch

E40 lampholders
Casing: PPS, black, T240
Fixing bracket with tapped fixing holes M5
Weight: 122.9/123.3 g, unit: 40 pcs.
Type: 12614/12612
Ref. No.: 400917
Ref. No.: 400918 with lamp safety catch
With steel thread
Ref. No.: 536220
Ref. No.: 533432 with lamp safety catch

E40 lampholders
Casing: porcelain, white, T270
Oblong holes for screws M5
Weight: 224/229.3 g, unit: 48 pcs.
Type: 12800/12801

Ref. No.: 108208

Ref. No.: 107780 with lamp safety catch
With steel thread
Ref. No.: 532602
Ref. No.: 532603 with lamp safety catch

E40 lampholders
Casing: porcelain, white, T270
Fixing bracket with slots for screws M5
Weight: 252.3/243 g, unit: 48 pcs .
Type: 12810/12811
Ref. No.: 108374
Ref. No.: 108375 with lamp safety catch
With steel thread
Ref. No.: 532604
Ref. No.: 532605 with lamp safety catch

E40 lampholders

Casing: porcelain, white, T270
Fixing bracket with tapped fixing holes M5
With lamp safety catch
Weight: 252.8 g , unit: 48 pcs .
Type: 12812

Ref. No.: 108373

With steel thread
Ref. No.: 532606

E40 lampholders
Only for lamps with base E40/E45
Casing: porcelain, white, T270
Oblong holes for screws M5
Weight: 206 g, unit: 50 pcs.
Type: 12900/12901
Ref. No.: 528252
Ref. No.: 528958 with lamp safety catch

10

E40 lampholders

Only for lamps with base E40/E45
Casing: porcelain, white, T270
Fixing bracket with slots for screws M5
Weight: 217 g , unit: 50 pcs .
Type: 12910/12911
Ref. No.: 528253
Ref. No.: 528254 with lamp safety catch

GY9.5 Lampholders

For discharge lamps with base GY9.5

GY9. 5 lampholder

Casing: ceramic, cover plate: PPS, black
T240, nominal rating: 10/500/5 kV, contacts: Ni
Leads: Cu tinned, stranded conductors
$5 \mathrm{kV}: 1 \mathrm{~mm}^{2}$, Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$,
length: 300 mm and Cu tinned,
stranded conductors $0.75 \mathrm{~mm}^{2}$, Si-insulation, length: 300 mm
Fixing holes for screws M3
Weight: 48 g, unit: 150 pcs.
Type: 37001

Ref. No.: 533663

RX7s Lampholders

If the central hole on the bracket is used for fixing it has to be ensured by an additional support within the luminaire that the bracket cannot be deformed. If the lampholders are used for lamps with ignition voltage max. 20 kV the luminaire manufacturer is responsible for sufficient creepage distances and clearances.

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Lead: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Fixing screw M4
Weight: 26.2 g , unit: 300 pcs.
Type: 32301

Ref. No.: 100913

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6$ mm, length: 200 mm Oblong holes for screws M4
Central hole for screw M4
Weight: 74.8 g , unit: 200 pcs.
Type: 32311 contact distance: 114.2 mm

Ref. No.: 100921

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6$ mm, length: 200 mm
Oblong holes for screws M4
Central tapped holes M4
Weight: 76 g, unit: 200 pcs.
Type: 32321 contact distance: 114.2 mm
Ref. No.: 100922

Remark on lampholders type 323:

The luminaire design must ensure protection from electric shock as well as sufficient creepage distances and clearances from live parts on the back of lampholder.

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6$ mm, length: 200 mm
Oblong holes for screws M4
Central hole for screw M4
Weight: 74 g , unit: 200 pcs.
Type: 32341 contact distance: 114.2 mm

Ref. No.: 100932

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6$ mm, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 75.5 g , unit: 200 pcs.
Type: 32361 contact distance: 114.2 mm

Ref. No.: 100934

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 76.4 g, unit: 200 pcs.
Type: 32381 contact distance: 114.2 mm

Ref. No.: 100937

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6$ mm, length: 200 mm
Oblong holes for screws M4
Central tapped hole M4
Weight: 78.3 g, unit: 200 pcs.
Type: 32326 contact distance: 132 mm

Ref. No.: 100925

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 77.6 g , unit: 200 pcs.
Type: 32330 contact distance: 132 mm
Ref. No.: 100928

Partly enclosed RX7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 4/500/5 kV
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$,
Si-insulation max. $\varnothing 3.6 \mathrm{~mm}$, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 75.7 g, unit: 200 pcs.
Type: 32336 contact distance: 132 mm

Ref. No.: 100931

K12x30s Lampholders

For discharge lamps with base K12x30s

K12×30s lampholders
Suitable for luminaires of protection class II
Casing: LCP, black, T150
Nominal rating: 4/500/3 kV
Contacts: CuSn6, silver plated
Leads: Cu tinned, stranded conductors $1 \mathrm{~mm}^{2}$ Si-insulation, doubled insulated
Rear recess M4, wrench size 7
Rear and bottom fixing holes for screws M5
Weight: 75.9/61.5 g, unit: 100 pcs.
Type: 13010
Ref. No.: $\mathbf{5 3 2 4 3 0}$ lead length: 705 mm
Ref. No.: 532431 lead length: 155 mm

K12s-7 Support

For metal halide lamps 1000 and 2000 W Type Osram HQI TS and Radium HRI TS

The luminaire design must ensure protection
from electric shock as well as sufficient creepage and clearance distances.

2 Components for Discharge Lamps

Electronic ballasts 51-56
Assembly instructions for mounting and installing 52-56
Circuit diagrams 56
Electromagnetic ballasts 56-64
Power reduction 57
Assembly instructions for mounting and installing 58-64
Circuit diagrams 62-64
Lampholders for high-pressure discharge lamps 65-66
Ignitors 66-71
Assembly instructions for mounting and installing 69-71
Power switches 72-74
Switch units 74-75
Energy efficiency classification 76
General technical details 228-236
Glossary 237-239

If the electrical current through a discharge lamp is increased, a discharge channel with very high luminous efficiency is created in the discharge chamber. Luminous flux and light output increase substantially. The internal pressure of the discharge chamber rises and attains between 1 and 10 bar these are so-called high-pressure discharge lamps or simply discharge lamps. The light output and colour rendition of high-pressure lamps vary considerably depending on the lamp family.

Discharge lamps can only be operated with ballasts. Ignitors are additionally required for sodium lamps and metal halide lamps. Furthermore, to compensate blind current when using magnetic ballasts, compensation capacitors must be fitted. The lampholders enable the lamp to be fixed in the luminaire and ensure simple exchange of lamps at the end of their service life.

As well as stabilising the lamp's operating point, ballasts also influence the lamp's output and luminous flux, the system's light output, the service life of the lamps as well as the colour temperature of the light.

The following chapters provide technical information regarding VS components for

- High-pressure sodium lamps
(HS lamps)
- Metal halide lamps
(HI lamps)
- Metal halide lamps with a ceramic discharge tube
(C-HI lamps)
- Mercury vapour lamps
(HM lamps)
- Low-pressure sodium lamps
(LS lamps)
Electromagnetic or electronic ballasts can be used for high-pressure discharge lamps. Unlike with fluorescent lamps, lamp efficiency is not decisively altered by the use of electronic ballasts. In contrast, electronic ballasts lead to a reduction of the inherent losses and thus to an increase in system efficiency. In addition, electronic ballasts ensure gentle lamp operation, which increases the lamp's service life.

Independent electronic and electromagnetic ballasts have also been developed, which in the form of control gear units then provide special advantages during application.

Electronic Ballasts for HI and C-HI Lamps

Electronic ballasts are fitted with all the components required to operate discharge lamps. Furthermore, they safely shut down lamps at the end of their service life to prevent high temperatures from being generated within the luminaires that could influence the service life of the luminaires and components.

By adding a strain-relief module, VS electronic built-in ballasts turn into independent operating devices that can, for instance, be used as a power unit and can also be installed in intermediate ceilings in this form.

Technical Details - Components for Discharge Lamps

Assembly Instructions for Electronic Ballasts

Assembly instructions for mounting and installing electronic ballasts for high-pressure discharge lamps

Mandatory regulations

DIN VDE 0100 Erection of low voltage installations

EN 60598-1 Luminaires - part 1: general requirements and tests

EN 61347-1 Operating devices for lamps - part 1: general and safety requirements

EN 61347-2-12 Control gear for lamps; part 2-12: Particular requirements for d.c. or a.c. supplied electronic ballasts for discharge lamps (excluding fluorescent lamps)

EN 55015 Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment

EN 61000-3-2 Electromagnetic Compatibility (EMC) - part 3: maximum values - main section part 2: maximum values for mains harmonics (device input current up to and including 16 A per conductor)

EN 61547 Installations for general lighting purposes - EMC immunity requirements

Descriptions of VS EBs for discharge lamps

The type designations for VS HID ballasts all follow the same pattern, as follows:

EHXc	70	.326
Electronic ballast for HID lamps	Wattage	Serial number

Mechanical mounting

Surface Firm, flat surface required to ensure good heat transfer. Avoid mounting on protruding surfaces.

Mounting location
Electronic ballasts must be protected against moisture and heat. Installation in outdoor luminaires: water protection rate of >4 (e.g. IP54 required).

Fastening Using M4 screws in the designated holes

Heat transfer If the ballast is destined for installation in a luminaire, sufficient heat transfer must be ensured between the electronic ballast and the luminaire casing. Electronic ballasts should be mounted with the greatest possible clearance to heat sources or lamps. During operation, the temperature measure at the ballast's tc point must not exceed the specified maximum value.

Supplement for independent electronic ballasts

Mounting position
Any position using the mounting tabs

Clearance \quad Min. of 0.10 m from walls, ceilings and insulation
Min. of 0.10 m from further electronic ballasts
Min. of 0.25 m from sources of heat (lamp)

Surface Solid; EB must not be allowed to sink into insulation materials

Technical specifications

Type	Operating voltage	Protective	Mean service		Temperature	Possible no. of VS devices/automatic cutout type			
	range AC: $220 \mathrm{~V} \ldots 240 \mathrm{~V}$	conductor mA	life*** hrs.	$\begin{aligned} & \text { factor } \\ & \lambda \end{aligned}$	protection*	B (10A)	B (16A)	C (10A)	C (16A)

Standard EB

$\begin{aligned} & \hline \text { EHXc 35.325 } \\ & (183033 ; 183034) \end{aligned}$	$\pm 10 \%$	≤ 0.5	32,000 ($\mathrm{t}_{\mathrm{c}} 85^{\circ} \mathrm{C}$)	0.95	yes**	7	12	12	20
			40,000 (tc $80^{\circ} \mathrm{C}$)						
			$50,000\left(\dagger_{\mathrm{c}} 75^{\circ} \mathrm{C}\right)$						
$\begin{aligned} & \hline \text { EHXc } 35.325 \\ & (183035) \end{aligned}$	$\pm 10 \%$	≤ 0.5	$32,000\left(t c 80^{\circ} \mathrm{C}\right)$	0.95	yes	7	12	12	20
			40,000 (tc $75^{\circ} \mathrm{C}$)						
			50,000 ($\left.\mathrm{t}_{\mathrm{c}} 70^{\circ} \mathrm{C}\right)$						
$\begin{aligned} & \text { EHXc } 70.326 \\ & (183036) \end{aligned}$	$\pm 10 \%$	≤ 0.5	$32,000\left(t c 80^{\circ} \mathrm{C}\right)$	0.95	yes**	7	12	12	20
			40,000 (tc $\left.75^{\circ}{ }^{\circ} \mathrm{C}\right)$						
			$\left.50,000 \mathrm{ltc}^{7} 70^{\circ} \mathrm{C}\right)$						
$\begin{aligned} & \hline \text { EHXc } 70.326 \\ & (183038) \end{aligned}$	$\pm 10 \%$	≤ 0.5	26,000 (tc $75^{\circ} \mathrm{C}$)	0.95	yes	7	12	12	20
			$40,000\left(t_{c} 65^{\circ} \mathrm{C}\right)$						
			$50,000\left(t c 60^{\circ} \mathrm{C}\right)$						

* The devices are fitted with a temperature switch to protect against impermissible overheating.

Once the device has cooled down, it is switched on again. It may prove necessary to briefly dis- and then reconnect the device to the mains voltage.
** The temperature protection inside the luminaire must be checked when using devices without a cap.
*** To achieve the mean service life, the max. temperature (t_{c} max.) at the t_{c} point must not be exceeded; failure rate $=0.2 \%$ per 1000 hrs

Product features

Shutdown of defective lamps
In the event of a lamp failing to ignite or of a lamp with an increased operating voltage (end of the lamp's service life), the electronic ballast will switch off after a defined period of time (<20 minutes). The ballast will also shut down if the lamp fails to attain its specified rated output. The ballast can be reset by disconnecting and then reconnecting the mains voltage. The ballast must always be disconnected from the mains prior to changing a lamp.

EOL Effect In high-pressure discharge lamps, the EOL effect manifests itself in a change of the lamp's voltage. These changes can, for instance, occur due to unsealed parts of the burner or the rectifier effect. An automatic EOL cut-out prevents safety risks at the end of the service life of high-pressure discharge lamps. EOL tests are conducted to check the behaviour of electronic ballasts at the end of a lamp's service life. The EOL cut-out stops the lamp base overheating at the end of a lamp's service life.

Short-circuit resistance
The ballast outputs (to the lamp) are short-circuit-proof. Short-circuits between the lamp connection and the casing (earth conductor) will destroy the ballast.

Temperature protection
To prevent excess temperatures, some ballasts are fitted with temperature protection. A ballast will restart after it has cooled down. It might be necessary to briefly interrupt the supply voltage. The above table contains a list of temperature-protected devices.

Transient mains peak protection
Values are in compliance with EN 61547 (interference immunity).

Electrical installation

Wiring

- The wiring between the mains, electronic ballast and lamp must comply with the respective circuit diagram. Note: the luminaire casing (metal) must be connected to the earth conductor.
- The electronic ballast must be earthed using a toothed washer or similar (protection class I, compliance with RFI/BCI standards).
- To ensure compliance with RFI suppression limits, mains conductors should not be wired parallel to lamp conductors and maximum clearance should be ensured.
- After the installation of electronic ballasts, luminaires must be tested to ensure compliance with maximum values laid down in EN 55015.
It is permissible to connect the protective conductor of the ballast by attaching the ballast to metal conductors that are connected to the protective conductor. In doing so, care must be taken to ensure the protective conductor is contacted in accordance with EN 60598 . If, however, a ballast is fitted with a connection terminal for a protective conductor without through-wiring and if this is to be used to connect the protective conductor, this connection terminal may only be used for the ballast itself.

Push-in terminals The used terminals can be connected using rigid or flexible conductors with a section of $0.75-2.5 \mathrm{~mm}^{2}$. The stripped conductor length is $10-11 \mathrm{~mm}$ for terminal grid 3.5 mm . Conductors must not be tin-plated.

Error current Impulse-resistant leak-current protection must be installed. Distribute the luminaires to phases L1, L2 and L3; install tri-phase Fl switches. If permissible, install FI switches with 30 mA leak current; connect no more than 15 luminaires as Fl switches can be triggered at half the leak current value.

Tri-phase connection of luminaires with EB

- Prior to operating newly installed lighting systems: check the mains voltage is appropriate to the electronic ballast's mains voltage range (AC, DC).
- The N-type conductor must be properly connected to all luminaires or ballasts.
- Conductors can only be connected or disconnected if the ballast is disconnected from the mains. Attention: N-type conductors must never be disconnected individually or as the first element.
- Insulation resistance test: from L to PE (L and N must not be connected)
- The neutral conductor must be reconnected after completion of the test.

Electromagnetic Compatibility (EMC)
Vossloh-Schwabe's electronic ballast range was developed in accordance with valid EMC standards (interference, interference immunity and mains harmonics) and specially designed to ensure safe compliance with the limiting values. It is assumed that any remarks regarding conductor wiring and conductor length in the instructions for installing electronic ballasts in luminaires or for independent ballasts will be observed.

Compensation Luminaires with electronic ballasts do not need compensation (power factor ≥ 0.95).

Selection of automatic cut-outs

Dimensioning automatic cut-outs
High transient currents occur when an EB is switched on because the capacitors have to load. Lamp ignition occurs almost simultaneously.This also causes a simultaneous high demand for power. These high currents when the system is switched on put a strain on the automatic conductor cut-outs, which must be selected and dimensioned to suit.

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11, for B, C characteristics.

No. of electronic ballasts (see table on page 53)
The maximum number of VS ballasts applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible ballasts must be reduced by 20% for multi-pole fuses. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m [2.5 mm^{2}] of conductor from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to $800 \mathrm{~m} \Omega$ increases the possible number of ballasts by 10%.

Additional information

Information on the installation of electronic ballasts for optimising EMC. To ensure good radio interference suppression and the greatest possible operating safety, the following points should be observed when installing electronic ballasts:

- Conductors between the EB and the lamp (HF conductors) must be kept short (reduction of electromagnetic interference).
- Mains and lamp conductors must be kept separate and if possible should not be laid in parallel to one another. The distance between HF and mains conductors should be as large as possible, ideally $>5 \mathrm{~cm}$. (This prevents the induction of interference between the mains and lamp conductors.)
- The mains conductor within the luminaire must be kept short (to reduce the induction of interference).
- Devices must be properly earthed. EBs require secure contacts to the luminaire casing or must be earthed using a PE connection. This PE connection should be effected using an independent conductor to achieve better dissipation of the leak current. EMC improves at frequencies greater than 30 MHz .
- The mains conductor must not be laid too close to the EB or the lamp (this is especially important in the event of through-wiring).
- Mains and lamp conductors must not be crossed. Should this be impossible to avoid, conductors should be crossed at right angles to one another if at all possible.
- Should conductors be wired through metal parts, such conductors must always be additionally shielded (e.g. with an insulating sleeve or grommet).

Temperature Reference point temperature t_{c}
The safe operation of electronic ballasts is dependent on the maximum permissible temperature not being exceeded at the measuring point. Vossloh-Schwabe has determined a casing temperature measuring point - t_{c} max. - on all EB casings. To avoid shortening the service life or diminishing operating safety, the stipulated maximum temperature must not be exceeded at this tc point. This point is determined by testing the converter during normal, IEC-standardised operation at the specified ambient temperature (ta), which is also indicated on the type plate. As both the design-related ambient temperature and the ballast's inherent heat, as determined by the installed load, are subject to great variation, the casing temperature should be tested at the tc point under real installation conditions.

Ambient temperature t_{a}
The ambient temperature - as specified on every EB - denotes the permissible temperature range within the luminaire.

Reliability and service life
If the max. temperature at the t_{c} reference point (as specified on the type plate and the technical documentation of the ballast) is not exceeded, the defined service life can be expected to be achieved, assuming a switching cycle of 165 minutes on and 15 minutes off. See table on page 53 for service life details.

Technical Details - Components for Discharge Lamps

Circuit diagrams for metal halide lamps (HI) and high-pressure sodium lamps (HS) with electronic ballasts (EB)

Electromagnetic Ballasts for Discharge Lamps

Electromagnetic ballasts for $\mathbf{H I}$ and HS Lamps

As the lamp manufacturer's reference values regarding lamp current and voltage are generally identical for metal halide (HI) and high-pressure sodium lamps (HS) of the same lamp wattage and the impedance values required for the ballast are also identical, the same ballasts can frequently be used for both lamp types. It should be remembered that HI lamps react sensitively to impedance deviations from the rated value with appreciable colour changes. Vossloh-Schwabe ballasts therefore comply with the lamp's narrower tolerances. Moreover, ballasts remain below the maximum peak DC value for HI lamps. This value is not specified for HS lamps; instead, the maximum stated start-up current must not be exceeded.

In order to keep the temperature of the luminaires and the electrical values of the lamps within tolerable limits, the impedance of the ballasts must remain constant over the entire service life. A so-called service life test (test of thermal durability) provides proof of this requirement having been met.

HI and HS lamps constitute a special case in terms of thermal testing. In rare cases, a safety risk can occur at the end of the service life of lamps fitted with external bulbs. The safety risk is caused by the so-called lamp rectifier effect, which can lead to overheating of ballasts, ignitors, lampholders and conductors and can therefore destroy the luminaire. Against this background, the luminaire standard EN 60598-1 "luminaires; part 1: general requirements and tests" has been supplemented by tests concerning this safety risk. As a result, since 1 September 2002, it has been illegal to market luminaires that do not comply with the new regulations. This means luminaires need to be fitted with thermal protection that prevents a luminaire from overheating in the event of this malfunction.

In this respect, it is recommended to use VS ballasts with temperature
switches that have already been tested using this circuit.

Electromagnetic ballasts for HM lamps

Even in the event of major mains fluctuations (92-106\% of the rated voltage), the ballast must not fall short of the no-load voltage specified by the lamp manufacturer nor exceed a fixed short-circuit current. The startup current must be high enough to ensure that at least 90% of the lamp's operating voltage is achieved within 15 minutes.

Technical Details - Components for Discharge Lamps

Power reduction with HS and HM lamps

The lamp wattage can be reduced by operating the ballast at a higher impedance value, higher than the rated value. The lamp manufacturer's specifications must be observed in doing so to avoid shortening the lamp's service life. The lamps should be started at the ballast's rated impedance and only switched down to reduced operation after a period of at least five minutes.
The impedance value can be altered by using an additional ballast (high-effort option) or by using a switch-able ballast (low-cost option). These ballast models can be switched using either a modern, time-controlled electronic power reduction switch, which is equipped with an additional control conductor (230 V), or a power reduction switch with a constant incentive rate setting (no control conductor).

The construction of power reduction switches with control conductors differs according to the selected increase in impedance.

Start-up switches

As high-pressure lamps operate with a start-up phase, the lamp's full luminous flux will only be reached after completion of this start-up period. In the event of disconnection from the mains, this start-up phase is dependent on the lamp's temperature. If an additional source of light is desired or required for this start-up period for safety-relevant applications, it is possible to switch on an auxiliary lamp with the help of a start-up switch.

- AS 1000 K for superimposed ignition systems. This switch monitors the lamp's operating voltage. If this is below a defined value (approx. 60% of the lamp's luminous flux), an auxiliary lamp is switched on.

Lamp family	Typical start-up time	Typical restart time (mains interruption at lamp operating temperature)
HS	3 min.	5 min.
$\mathrm{HI} / \mathrm{C}-\mathrm{HI}$	3 min.	10 min.
HM	$4-5 \mathrm{~min}$.	$4-5 \mathrm{~min}$.
LS	10 min.	5 min.

Assembly Instructions for Electromagnetic Ballasts

For mounting and installing electromagnetic ballasts for high-pressure discharge lamps

Mandatory regulations

DIN VDE 0100 Erection of low voltage installations

EN 60598-1 Luminaires - part 1: general requirements and tests
EN 61347-1 Operating devices for lamps - part 1: general and safety requirements

EN 61347-2-9 Operating devices for lamps; part 2-9: special requirements for ballasts
for discharge lamps (except fluorescent lamps)

EN $60923 \quad$ Ballasts for discharge lamps - performance requirements

EN 55015 Maximum values and methods of measurement for RFI suppression in
electrical lighting installations and similar electrical appliances

EN 61000-3-2 Electromagnetic Compatibility (EMC) - part 3:
maximum values - main section part 2: maximum values for mains harmonics
(device input current up to and including 16 A per conductor)
EN 61547 Installations for general lighting purposes - EMC immunity requirements

Technical specifications

Operating voltage range
The ballasts can be operated at the specified mains voltage within
a tolerance range of $\pm 10 \%$ for $\mathrm{HS} / \mathrm{HI}$ and HM lamps and $\pm 3 \%$ for C-HI lamps.

Leak current $\leq 0.1 \mathrm{~mA}$

Compensation/power factor
Inductive ballasts: $\lambda \leq 0.5$
Parallel-compensated ballasts: $\lambda \geq 0.85$

Mechanical mounting

Mounting position
Any

Mounting location
Ballasts are designed for installation in luminaires or comparable devices. Independent ballasts do not need to be installed in a casing.

Fastening Preferably using M4 to M6 screws, depending on the size of the ballast. Encapsulated ballasts may only be used with flat-headed screws (M5), underlaid with a washer (DIN 9021). (Tightening torque $\approx 2 \mathrm{Nm}$)

Temperature The winding temperature tw must be checked during operation and must not exceed the specified maximum value. It must be tested by using the standardised method of measuring resistance. The Δt marking on the type plate is a measure of the ballast's inherent heating and thus of its power loss. The lower this value is the lower the power loss of the ballast. This value is determined using standardised measuring regulations and constitutes a benchmark for comparing ballasts of the same design for selection purposes.

Electromagnetic compatibility (EMC)

Interference Interference voltage measurements have to be taken at the connection terminals for luminaires with electromagnetic ballasts as these are systems that operate with lamp voltages of under 100 Hz . These low-frequency interference voltages are generally not critical with high-pressure discharge lamps with electromagnetic ballasts.

Interference immunity
Thanks to the robust design and choice of materials, electromagnetic ballasts provide a high degree of interference immunity and are not impaired by normal mains power interference.

Mains Harmonics
After every zero crossing of the lamp current, discharge lamps experience a re-ignition peak as the lamps go out for a brief (imperceptible) moment. These re-ignition peaks of discharge lamps generate mains harmonics that are smoothed by the ballast's impedance. VS electromagnetic ballasts all comply with the stipulated maximum values.

Selection of automatic cut-outs for VS electromagnetic ballasts

Dimensioning automatic cut-outs
When a ballast is switched on, high transient current peaks occur due to parasite capacitances that can accumulate with the number of luminaires. These high system switch-on currents put a strain on the automatic conductor cut-outs. For this reason, only surge-current-proof automatic cut-outs should be used for lighting systems.
Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11,
for B and C characteristics.

No. of ballasts The following values are meant as guidelines only and may vary depending on the respective lighting system. The maximum number of VS ballasts applies to cases where the devices are switched on simultaneously. Specifications apply to singlepole fuses. The number of permissible ballasts must be reduced by 20% for multi-pole fuses. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m of [$2.5 \mathrm{~m}^{2}$] conductor from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to $800 \mathrm{~m} \Omega$ increases the possible number of ballasts by 10%. The values quoted in the following tables are guidelines and can be affected by system-specific factors.

Technical Details - Components for Discharge Lamps

Possible number of ballasts connected to automatic cut-outs with or without compensation

Lamp data	Cp	Max. number	d	,	,					,		,					
		C10	C13	C16	C2		C25		B10	B1		B1		B2		B2	
W \|V	$\mu \mathrm{F}$	without / with	without with	without $/$ with	without	with	without	with	without $/$ with	without	with	without	with	without	with	without	with

Mercury vapour lamps (HM)

50	230	7	10	19	13	25	15	31	18	39	23	49	8	10	11	12	13	15	16	18	20	23
80	230	8	6	12	7	15	9	19	11	24	14	30	6	6	8	7	10	9	12	11	15	14
125	230	10	4	7	5	9	7	12	7	15	9	19	4	4	5	5	7	6	9	7	10	9
250	230	18	2	4	3	5	3	6	3	7	4	9	2	2	3	2	3	3	4	3	5	4
400	230	25	1	2	1	3	2	4	2	5	2	6	1	1	1	1	2	22	3	2	3	2
700	230	40	-	1	-	1	1	2	1	2	1	3	1	-	1	-	1	1	1	1	2	1
1000	230	60	-	1	-	1	-	1	1	2	1	2	-	-	-	-	1	-	1	1	1	1

Metal halide lamps (HI)

35	230	6	11	22	14	29	18	36	23	45	29	50	9	11	12	14	15	18	18	23	23	27
70	230	12	7	12	9	15	11	18	14	23	17	29	5	8	6	10	8	13	9	16	12	20
100	230	12	6	10	7	13	9	16	11	20	14	25	4	7	5	9	6	11	8	14	10	17
150	230	20	4	7	5	9	6	11	7	14	9	17	2	5	3	6	4	8	5	10	6	12
250	230	32	2	5	2	6	3	7	4	9	5	11	1	3	1	4	2	5	3	6	4	8
400	230	35	2	3	2	4	3	5	4	7	5	8	1	2	1	3	2	4	2	5	3	6
1000	230	85	-	1	-	1	1	1	1	3	1	3	-	-	-	-	-	1	1	1	1	2
2000	380	60	-	1	-	1	-	2	-	2	-	3	-	-	-	-	-	1	-	1	-	2
2000	380	37	-	-	-	-	-	1	-	1	-	2	-	-	-	-	-	-	-	1	-	1
3500	380	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

High pressure sodium vapour lamps (HS)

35	230	6	11	22	14	29	18	36	23	45	29	50	9	11	12	14	15	18	18	23	23	27
50	230	10	9	16	11	20	14	24	18	31	22	38	6	11	8	14	10	17	13	22	16	27
70	230	12	7	12	9	15	11	18	14	23	17	29	5	8	6	10	8	13	10	16	12	20
100	230	12	6	10	7	13	9	16	11	20	14	25	4	7	5	9	6	11	8	14	10	17
150	230	20	4	7	5	9	6	11	7	14	9	17	2	5	3	6	4	8	5	10	7	12
250	230	36	2	5	2	6	3	7	4	9	5	11	1	3	1	4	2	5	3	6	4	8
400	230	45	1	3	1	3	2	4	3	5	4	7	1	2	1	2	1	3	2	4	2	5
600	230	60	1	2	1	2	1	2	2	3	2	4	-	1	-	1	1	2	2	2	2	3
1000	230	100	1	1	1	1	1	1	1	2	2	3	-	-	-	-	-	1	1	1	1	2

Safety functions

The VS range includes ballasts with an integrated temperature switch that safely disconnects the lamp from the power supply if the lamp should develop the rectifier effect towards the end of its service life. The cut-out behaviour of the temperature switch is influenced by the luminaire construction. The luminaire manufacturer is responsible for checking the factory settings of the temperature switch in accordance with EN 60598-1 Section 12.5. VS can adjust the temperature switch to the appropriate cut-out temperature to suit requirements.

Reliability and service life

Provided the maximum winding temperature is not exceeded, the ballasts can be expected to yield a service life of 100,000 operating hours.Failure rate $<0.025 \% / 1,000 \mathrm{hrs}$

Technical Details - Components for Discharge Lamps

Electrical installation

Push-in terminals Terminals can be contacted with rigid conductors up to a maximum of $1.5 \mathrm{~mm}^{2}$.

Screw terminals - Terminals can be contacted with rigid or flexible conductors with ferrules on bare end of core

- Conductor cross-sections are determined by the terminals and can vary according to type $0.5-1.5 \mathrm{~mm}^{2} / 0.75-2.5 \mathrm{~mm}^{2} / 1.5-2.5 \mathrm{~mm}^{2}$
- Stripped lead length: 8-9 mm
- Conductors must not be tin-plated
- Max. tightening torque 0.5 Nm

Wiring The wiring between the power supply, ballast and lamp must be in accordance with

[^16]

Technical Details - Components for Discharge Lamps

Circuit diagrams for high-pressure sodium lamps (HS) and metal halide lamps (HI)

Technical Details - Components for Discharge Lamps

Circuit diagrams for mercury vapour lamps (HM)

67

HM lamps

70

HM lamps (ballasts with two alternative voltage and power tapping points apiece)

68

HM lamps (ballasts with two alternative voltage tapping points)

Start-up switch for HM lamps with auxiliary lamp

Power reduction of mercury vapour lamps (HM lamps)

LST connectable to L1, L2 and L3

Disconnected control phase (LST $=0 \mathrm{~V}$)
with ballasts with two tapping points

Connected control phase (LST = 230 V) with ballasts with two tapping points

Disconnected control phase (LST = O V)
with two ballasts connected in paralle

69

HM lamps (ballasts with two alternative power tapping points)

Disconnected control phase (LST $=0 \mathrm{~V}$) with ballasts with two tapping points

97

Electronic power reduction without control phase

Ballasts with two tapping points and two voltage tapping points (LST $=0 \mathrm{~V}$ or $\mathrm{LST}>0 \mathrm{~V}$)

Technical Details - Components for Discharge Lamps

Power reduction of high-pressure sodium lamps (HS lamps) - superimposed ignition system

LST connectable to L1, L2 or L3

Power switching of LED drivers and electronic ballasts

100

Lampholders for High－pressure Discharge Lamps

Metal halide and high－pressure sodium lamps feature extremely different bases，which include RX7s， Fc2，G8．5，GX8．5，GU8．5，GX10，G12，GX12，PG12，PGJ5，GU6．5，E27 and E40，depending on whether the lamp is single－or double－ended．All lampholders are subject to the same typical conditions found with discharge lamps：high ignition voltages and temperatures．The high start－up currents deserve particular attention in lampholder design．This is also reflected by the insulation materials，which are usually solid ceramics or heat－resistant plastic（e．g．PPS－polyphenylene sulphide）．Depending on the lamp＇s requirements（voltage，current，temperature，etc．），silver，nickel and copper alloys with thick nickel coatings are used as conductors．The luminaire regulation EN 60598－1（VDE 0711 part 1），defines the safety requirements with regard to ignition voltages in connection with creepage and air clearance distances．Special care must be taken to ensure that lampholders are approved for discharge lamps when using high－pressure lamps with E27 and E40 Edison bases．Lampholders that are suitable for this purpose are marked with a maximum value of＂ 5 kV ＂and comply with the increased creepage and air clearance distances specified by the lampholder requirements in EN 60238 （VDE 0616 part 1）．The lampholder regulations governing special lampholders，EN 60838－1（VDE 0616 part 5），apply analogously to all other base systems．The high ignition voltage pulses also place special demands on the conductors．In practice，silicone－insulated conductors with an outer diameter of 3.6 mm have proved to be suitable for discharge lamps．Silicone－insulated conductors with a glass－silk lining with a diameter of 7 mm should be used for lamps with an instant hot restart（ 20 kV ）function．

When connecting lampholders to push－in terminals of ballasts，the diameter of the conductor and the length of the stripped cables must be taken into account to ensure correct operation of the installed components．To this end，Vossloh－Schwabe can make additional versions available with compacted cable ends as further options．

When using compacted cable ends，the reduction of the cable diameter at the end of the cable must be taken into account，which means that the respective ballast push－in terminal has to be capable of taking the next－smaller cable diameter（see table with examples）．

When using screw terminals to connect a ballast，it is recommended to use a ferrules on the bare end of core．

Cable cross－section mm^{2}	Push－in terminal range on the ballast when using compacted cable ends mm^{2}
0.75	≥ 0.5
1	≥ 0.75

VS lampholders for the UL market and UL approved leads are available for all common lamp types．

Further information can be found at www．unvlt．com／ products／legacy／lamphol－ ders．

Ferrule on bare end of core

Compacted cable ends

Bases for the most commonly used HI and HS lamps

$=1$	$4{ }^{41}$	可	$\begin{aligned} & \text { 咆 } \\ & \text { 吨 } \end{aligned}$	$\stackrel{-4}{\square}$	呵	$=0$		$=$	$=$	
G8．5	GX8．5	GY9．5	GU6．5	GU8．5	GX10	G12	GX12	PG12－1	PG 12－2	
$a-\\|\}$	（25			Hencme						
PGJ5	RX7s			E27	E40／41		E40／45	E40／8		

Bases for the most commonly used HM lamps

Edison bases are predominantly used for mercury vapour lamps (HM)

Ignitors

Ignition voltages for high-pressure sodium lamps (HS) and metal halide lamps (HI)

The ignition voltage of HS and H l lamps is determined by the respective lamp technology as well as the creepage and air clearance distances of the base-lampholder system. High-pressure sodium lamps of 35 , 50 and 70 W with an E27 base are ignited with a voltage of between 1.8 and 2.3 kV . All other high-pressure lamps of the sodium and metal halide families require an ignition voltage of between 4 and 5 kV (except for special lamps and lamps with base PGJ5).

Superimposed ignitors

Superimposed ignitors work independently of ballasts and generate defined ignition pulses within the voltage ranges of $220-240 \mathrm{~V} \pm 10 \%$ and $380-415 \mathrm{~V} \pm 10 \%$. As the mains frequency only plays a minor role, these systems work equally well at 50 Hz and 60 Hz . In accordance with the lamp manufacturer's specifications, pulses or clusters of pulses of defined width and height are generated in every half wave. Although lamp current flows through superimposed ignitors, they only cause low losses in relation to the system's power consumption. The maximum ambient temperature can be calculated by subtracting the ignitor's self-heating, which is caused by the inherent losses, from the specified maximum casing temperature (t_{c}).

Superimposed ignitors should be mounted near the lampholder. The clearance needed between the ignitor and the lamp is determined by the respective maximum load capacitance, which is specified for each ignitor in the technical specifications. The capacitive load of the cable is dependent on its physical properties and wiring layout; this value usually ranges between 70 pF and 100 pF per metre. The casing temperature must not fall below $-30^{\circ} \mathrm{C}$ and must not exceed the maximum value specified on the device.

Pulse ignitors

Pulse ignitors use the winding of an inductive ballast to generate the pulse voltage needed to ignite high-pressure discharge lamps. For that reason, ballasts must be designed to withstand these high ignition voltages. In this respect, special attention is paid to the insulation as well as the creepage and air clearance distances. As pulse ignition systems generate high-energy pulses, they are also suitable in the event of longer conductor distances between ignitor and lamp. State-of-the-art ignitors feature electronic circuitry. Depending on their design and the technical requirements, the simplest solution is to connect pulse ignitors in parallel with the lamp. Further models make partial use of the winding of a ballast, which will either feature multiple tapping points for voltage selection or special tapping points for pulse operation.

Circuit principle of a pulse ignitor

Technical Details - Components for Discharge Lamps

VS ignitors provide the following advantages:

- fully electronic construction
- compact design
- large nominal voltage range
- large output range
- low self-heating
- minimal power loss
- low noise
- long service life
- high electrical safety due to high-quality components (e.g. approved capacitors)
- highly heat-resistant (max. permissible casing temperature $\mathrm{t}_{\mathrm{c}}: 105^{\circ} \mathrm{C}$ for superimposed ignitors and $95^{\circ} \mathrm{C}$ for pulse ignitors)
- highly fire-resistant potting compound (certified according to EN 60926 and UL 94-VO)
- environmentally compatible potting compound (waste key No. 57110)

Product range

Vossloh-Schwabe's product range covers superimposed and pulse ignitors in standard models and with automatic cut-outs. Superimposed ignitors with automatic cut-outs are available with various cut-out times and ignition voltage pulse mechanisms (A and D). In this respect, D-series ignitors featuring the intelligent pulse-pause mode (IPP) are the best solution in terms of ignition reliability and switching off defective lamps.

Electronic ignitors with integrated cut-outs capture data on ignition behaviour during the ignition process. These data, e.g. regarding ignition frequency or failure, serve to identify ageing lamps and to ensure the ignition process is reliably switched off after a defined period of time at the end of the lamp's service life or in the event of defective lamps. This reduces the negative consequences associated with defective lamps.

Superimposed and Pulse Ignitors with Automatic Cut-out

Ignitors with IPP technology and extended cut-out - D series

After connection to mains voltage, D series ignitors generate ignition voltage pulses that are controlled and if necessary switched off by the ignitor in accordance with the lamp's operating state, lamp recognition and the safe burning time. If the safe burning time is not attained after three consecutive ignition attempts, pulse generation will cease.

Appropriately programmed microprocessors enable these performance features
of ignitors with IPP technology (Intelligent Pulse-Pause Mode) and extended cut-outs.

Z ... D20/
PZ ... D20 for HS, HI and C-HI lamps
programmed cut-out time: 1,216 seconds

Ignitors with IPP technology and extended cut-outs are available up to an output of 1,000 W.

Technical Details - Components for Discharge Lamps

Programmed cut-out function of VS ignitors

A5

Time

Ignitors with automatic cut-out - A series

After connection to mains voltage, A series ignitors supply a continuous stream of ignition voltage pulses until the lamp has ignited or the predefined cut-out time (sum of all ignition periods) has been reached if the lamp fails to ignite.

PZ ... A5 for HSI lamps
programmed cut-out time: ca. 300 seconds

Pulse ignition systems - overview of technical specifications

For HS, HI and C-HI lamps - PZ 1000 K D20
for high-pressure sodium lamps (HS) 50-1000 W,
metal halide lamps (HI) 35-1000 W and
for ceramic discharge tube lamps (C-HI) 35-400 W
Ignition voltage: $1.8-2.3 \mathrm{kV}$ or $4-5 \mathrm{kV}$
No. of pulses: 2 per mains period
Load capacitance: 20-1000 pF
Ignitors with automatic cut-out and IPP technology
Suitable ballast types: $\mathrm{NaHJ} .$. PZT with special winding tapping point,
whose position is determined by the magnitude of the ignition voltage

For HS lamps - PZS 1000 K
for standard high-pressure sodium lamps (HS) 50-1000 W
Not suitable for discharge lamp models SUPER, PLUS, XL, etc.
Ignition voltage: approx. 4 kV
No. of pulses: 1 per second
Load capacitance: 20-4000 pF
Suitable ballast types:
NaH ... P with winding tapping point
(20 V voltage difference)

For HI lamps - PZI 1000/1 K
for metal halide lamps (HI)
with an ignition voltage up to 0.9 kV
No. of pulses: 1 per mains period
Load capacitance: max. 10,000 pF
Suitable ballast models: Q...

Assembly Instructions for Ignitors

For mounting and installing ignitors

Mandatory regulations

DIN VDE 0100 Erection of low voltage installations

EN 60598-1 Luminaires - part 1: general requirements and tests
EN 61347-1 Operating devices for lamps - part 1: general and safety requirements

EN 61347-2-1 Control gear for lamps; part 2-1: special requirements for ignitors (other than glow starters)

EN 60927 Control gear for lamps; ignitors (other than glow starters); performance requirements
EN 55015 Maximum values and methods of measurement for RFI suppression in electrical lighting installations and similar electrical appliances

EN 61000-3-2 Electromagnetic Compatibility (EMC) - part 3:
maximum values - main section part 2: maximum values for mains harmonics (device input current up to and including 16 A per conductor)

EN 61547 Installations for general lighting purposes - EMC immunity requirements

Technical specifications

Operating voltage range
Ignitors can be operated at the specified mains voltage within a tolerance range of $\pm 10 \%$.

Max. casing temperature tc
A maximum casing temperature tc of $105^{\circ} \mathrm{C}$ or $95^{\circ} \mathrm{C}$ is specified for superimposed ignitors and pulse ignitors, respectively. Tests carried out during operation must ensure this maximum value is not exceeded. Selecting an ignitor for higher lamp currents can reduce self-heating and thus also the temperature at the to measuring point. Details regarding self-heating can be found in the following table. The temperature structure in the luminaires is negatively influenced by ageing lamps.

Minimum ambient temperature t_{a}
The minimum ambient temperature ta for all superimposed and pulse ignitors is $-30^{\circ} \mathrm{C}$. Ignitors for use in applications with special requirements to the ambient temperature (for example $-40^{\circ} \mathrm{C}$) are available on request.

Technical Details - Components for Discharge Lamps

Superimposed ignitors - Technical specifications

* With a conductor of, for instance, 100 pF per $\mathrm{m}\left(3 \times 2.5 \mathrm{~mm}^{2}\right)$

Pulse ignitors - Technical specifications

Nominal voltage/ frequency V / Hz	Pulse ignitor type	Casing temperature tc ${ }^{\circ} \mathrm{C}$	Ignition voltage kV	Max. load capacity pF	Max. conductor length between ignitor and lamp* m	Connection screw terminals mm^{2}	Casing material	Dimensions (dia. $\times \mathrm{L}$ or $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$) length without threaded stud mm
220-240/50-60	PZS 1000 K	95	approx. 4	4000	40	0.5-1.5	PC	$50 \times 28 \times 27$
	PZ 1000 K D20	95	$\begin{aligned} & 1.8-2.3 / \\ & 4.0-5.0 \end{aligned}$	1000	10	0.75-2.5	PC	$74 \times 34 \times 27$
	PZI 1000/1 K	95	0.7-0.9	10000	100	0.5-2.5	PC	$57 \times 28 \times 27$
380-420/50-60	PZ 1000/400 V A5	95	4.0-5.0	800	8	0.75-2.5	Al	$\bigcirc 40 \times 80$

[^17]
Technical Details - Components for Discharge Lamps

Mechanical mounting

Mounting position
Any

Mounting location
Ignitors are designed for installation in luminaires or comparable constructions. Ignitors must be protected against radiation of direct lamp heat by appropriate installation.

Clearance from lamp
The clearance needed between ignitor and lamp is determined by the load capacitance of the conductors and by the type of ignitor pulses. The table on page 70 gives details of the clearance needed for a typical 3-phase lead with a cross-section of $2.5 \mathrm{~mm}^{2}$ per conductor

Casing materials Unmarked in the type description: aluminium; marked "K": polycarbonate

Fastening Via threaded stud M8x10 (Z 2000 S, Z 3500 S/400 V: M12x12)
Dimensions The table on page 70 provides details of ignitor dimensions.

Electromagnetic compatibility (EMC)

Interference Ignitors only generate interference due to the high ignition voltages during lamp ignition. This is classified as click interference and is not evaluated in lighting technology. However, as this interference occurs continuously in the event of old lamps that fail to ignite, operators of lighting systems are legally obliged to exchange such lamps.

Interference immunity
Owing to their design and the materials used, VS ignitors are characterised by high interference immunity and comply with the specified maximum values.

Mains harmonics

Are not observed during lamp ignition. VS ignitors meet the requirements.

Reliability and service life

The service life of an ignitor is dependent on strict compliance with the casing temperature tc during operation. As the ignitors are only subjected to loads during high-voltage lamp ignition, a service life of 10 years can be expected provided the tc values are not exceeded. Failure rate: < 0.04\%/1,000 hrs

Electrical installation

Connection terminals
Ignitors feature screw or push-in terminals. For screw terminals a maximum torque value of 0.8 Nm must not be exceeded when connecting the conductor. Push-in terminals are for rigid conductors with a cross section of $0.5-2.5 \mathrm{~mm}^{2}$ or respective flexible conductors with ferrule bare end of cores. Stripped lead ends of $8-9 \mathrm{~mm}$ are required. Tinned lead ends are not permitted. The permissible conductor cross-sections can be seen in the table on page 70.

Wiring The ignitors must be wired between ballast and lamp in accordance with the circuit diagrams on pages 62-64. The load capacitances of the wiring must also be taken into account. Distances to lamps should be kept as short as possible.

Power switches for street lighting

In view of the drive to cut public spending on energy and also in the light of environmental policies to protect resources, reducing the power consumption of high-pressure discharge lamps is becoming increasingly important.

Power reduction is possible on high-pressure sodium vapour and mercury vapour lamps and is realised with the aid of electronic actuators or by switching the inductance in the luminaire itself with the aid of power switches.

Provided that the lamp still emits an acceptable minimum of light output and uniformity, these lamps can be used to reduce the lighting level of outdoor lighting systems during off-peak traffic periods (e.g. in accordance with DIN 5044 for street lighting).In conjunction with the appropriate ballasts, the VS power switches constitute a perfect all-round solution for power switching purposes. This VS system has been approved by leading lamp manufacturers.

Power switch PR 12 K LC - Power reduction without control line

The new VS PR 12 K LC power switch is capable of setting the period of power-reduced operation based on the measured burning time of a lighting system. This eliminates the time-consuming task of continually adjusting the times of power-reduced operation to suit constantly changing day-night cycles; it also removes the need for making adjustments due to daylight-saving times and is thus suitable for use worldwide (regionally independent).

Function

The intelligent PR 12 K LC power switch does not require a control line to reduce lamp output; it uses the tapping of the ballast. Thanks to an integrated microprocessor, the PR $12 \mathrm{~K} L C$ power switch can measure the burning time of the luminaire. This value is then compared to data stored on the chip and used to set the time at which the luminaire will switch over to power-reduced operation. The luminaire will be operated at reduced power for a minimum of six hours (reduced by approx. 40% of the lamp's nominal rating at 50% of luminous flux). This period of power reduction can be extended to a maximum of 10 hours.

Setting periods of power-reduced operation

The power switch is delivered in its default setting - i.e. the dial is set to 'Test (Code O)'. After the luminaire has been installed, the desired power reduction time must be set using the dial on the power switch. The power-reduction period can be set to a minimum of six hours and can be extended by up to two hours in both directions (i.e. earlier or later). This results in a maximum power-reduction period of 10 hours.

The dial enables the following settings:

Dial settings Position		Timings	Basic power Hours		\dagger_{2} reduction period (hrs)	Total power Hours
0	Test	Factory setting: 5 seconds on full load, followed by power reduction				
1	$0 / 0$	0	6	0	6	
2	$0 / 1$	0	6	1	7	
3	$0 / 2$	0	6	2	8	
4	$0.5 / 0$	0.5	6	0	6.5	
5	$0.5 / 1$	0.5	6	1	7.5	
6	$0.5 / 2$	0.5	6	2	8.5	
7	$1 / 0$	1	6	0	7	
8	$1 / 1$	1	6	1	8	
9	$1 / 2$	1	6	2	9	
A	$1.5 / 0$	1.5	6	0	7.5	
B	$1.5 / 1$	1.5	6	1	8.5	
C	$1.5 / 2$	1.5	6	2	9.5	
D	$2 / 0$	2	6	0	8	
E	$2 / 1$	2	6	1	9	
F	$2 / 2$	2	6	2	10	

Technical Details - Components for Discharge Lamps

Determining operating/power reduction periods

- The dial is set to the desired period of power reduction, e.g. to position 1 (0/0), which corresponds to a power-reduction period of six hours.
- In the first night, the luminaire is activated by the twilight switch (e.g. at 20:30 hours) and will operate at its nominal rating. After four hours (default setting), the luminaire will be switched down by 40% of the lamp output by the power switch and will then remain in power-reduced operation until the twilight switch turns the system off (e.g. at 06:30 hours).
- During this time, the power switch will measure the entire burning time of the lamp (10 hours in our example).
- The power switch then compares the measured burning period with values stored on the microprocessor The integrated comparative values of the power switch form the basis for the starting point of power-reduced operation for the following night. The "new" starting time will then be stored by the power switch until the following night.
- In the second night, the lighting system - controlled by the twilight switch and thus dependent on the day/night cycle of the respective region and the time of year - will be activated (and deactivated) at a slightly different time as compared to the first night (either earlier or later, depending on the season)
- With the dial set to position 1, the power switch will thus activate the six-hour period of powerreduced operation after two hours, as per our example, and will then revert to nominal operation before the twilight switch finally sends the signal to switch the lighting system off.
- During the night, the power switch will again measure the entire burning time, compare this value with the stored values and then reset the starting time for power-reduced operation.
- The period of power-reduced operation can be adjusted by changing the dial setting. This period can be extended in both directions (i.e. earlier or later) as detailed in the table on page 72.
- If the dial is, for instance, set to $9(1 / 2)$ this will produce a total period of power-reduced operation of 9 hours $(1+6+2)$. As a result, power-reduced operation will begin one hour earlier than the value determined the night before would ordinarily prescribe and will then extend the minimum period of powerreduced operation by two hours.
- If, in very rare cases, the total burning period of the lighting system should remain under six hours per night, the power switch will activate power-reduced operation after 15 minutes of nominal operation and stay in power-reduced mode until the lighting system is switched off. Switching diagram for power reduced operation.

Switching diagram for power reduced operation

Deactivating reduced-power operation for the night

The functional scope of the PR 12 K LC power switch has been extended with an extra function that permits the operator to deactivate reduced-power operation of the lighting system for a single night. The function can be useful for local festivities or events (e.g. town fêtes) during which it would not be appropriate to operate the local street lighting system at reduced power for safety reasons.

The power switch can be easily programmed to operate the lighting system at normal (i.e. 100\%) power for the immediately following night cycle. The power switch is programmed by briefly switching the lighting system on for a period of min. 60 and max. 90 seconds during the day of the event and then switching it off again. The intelligent power switch recognises this command and sets the usual reduced-power operation to zero. The power switch can be successively programmed in this manner as many days in a row as necessary. For every night the lighting system is to be operated at normal (100\%) power, the lighting system will have to be switched on for a period of min. 60 and max. 90 seconds during the day. The lighting system will be operated at normal 100%) power in the respective night following day-time activation of the extra function.

The power switch does not need to be reprogrammed to return to power-reduced operation of the lighting system. The power switch will automatically return to its original (power-educing) program if the lighting system is not switched on during the day for a period of min. 60 and max. 90 seconds.

Before testing the extra function, it is important to ensure that the power switch has been in operation for at least one night cycle. Only then will the "learning cycle" start that is required to perform the basic function. After that, the extra function can be activated as described above.

Luminaire testing

The 'Test (Code O)' dial setting on the power switch is used for luminaire testing during production as well as for direct function tests for "subsequent" installation in the lighting system. After the luminaire is switched on, the lamp is first operated at its nominal rating. After only five seconds, the system will be switched over to power-reduced operation, which will produce a visible change even though the lamp will not yet have attained its full output.

Maintenance work on the lighting system

Maintenance work that requires the lighting system to be switched on for a period of less than two hours will not influence the settings of power switch PR 12 K LC.
Should the lighting system need to be switched on for more than two hours during maintenance work, the PR 12 K LC power switch will activate power-reduced operation after 15 minutes of nominal operation in the following night and will then start to re-measure the total burning time of the lighting system. To determine the starting time of power-reduced operation for subsequent nights, the power switch will again use the stored comparative values.

Switch Units

For power reduction using electronic ballasts with a 1-10 V interface

Suitable for a broad range of lamps

Vossloh-Schwabe's switch units are designed to enable one-step power reduction of lamps (FL, CFL, LED, HS, HI and $\mathrm{C}-\mathrm{HI})$ with the help of the respective electronic ballast or converter. To this end, the switch units utilises the $1-10 \mathrm{~V}$ interface of the control gear unit. The switch unit is mainly intended for outdoor luminaires in systems with or without a control phase.

Discharge lamps may only be operated at reduced power if they have been expressly approved for this purpose by the manufacturer. In addition, the unit can also be used to dim tubular and compact fluorescent lamps as well as LEDs.

The $1-10 \mathrm{~V}$ interface is addressed via an external circuit at the output of the switch unit using a suitably dimensioned resistor. The type of resistor and circuitry are selected by the luminaire manufacturer to suit the desired degree of power reduction.
The switch unit satisfies the provisions of DIN EN 61347 and is suitable for use in outdoor luminaires of protection classes I and II.

Function PR 1-10 V K LC

The intelligent PR 1-10 V K LC switch unit does not require a control line to reduce lamp output.

The luminaire will be operated at reduced power for a minimum of six hours (reduced by approx. 40\% of the
lamp's nominal rating at 50% of luminous flux). This period of power reduction can be extended to a maximum of 10 hours.

Setting periods of power-reduced operation for PR 1-10 V K LC

The PR 1-10 V K LC switch unit is delivered in its default setting - i.e. the dial is set to 'Test (Code 0)'.
After the luminaire has been installed, the desired power reduction time must be set using the dial on the switch unit. The power-reduction period can be set to a minimum of six hours and can be extended by up to two hours in both directions (i.e. earlier or later). This results in a maximum power-reduction period of 10 hours.

The dial enables the following settings:

Dial Settings Position	Timings	$\dagger 1$ Hours	Basic power reduction period (hrs)	†2 Hours	Total power reduction time (hrs)
0	Test	Factory setting: 5 seconds on full load, followed by power reduction			
1	0/0	0	6	0	6
2	0/1	0	6	1	7
3	0/2	0	6	2	8
4	0.5/0	0.5	6	0	6.5
5	0.5/1	0.5	6	1	7.5
6	0.5/2	0.5	6	2	8.5
7	1/0	1	6	0	7
8	1/1	1	6	1	8
9	1/2	1	6	2	9
A	1.5/0	1.5	6	0	7.5
B	1.5/1	1.5	6	1	8.5
C	1.5/2	1.5	6	2	9.5
D	2/0	2	6	0	8
E	2/1	2	6	1	9
F	$2 / 2$	2	6	2	10

SU 1-10 V K

PR 1-10 V K LC

Technical Details - Components for Discharge Lamps

Energy efficiency classification

Based on Directive 2009/125/EC, the European Commission has revised and redefined the limit values from Regulations (EC) 244/2009, (EC) 245/2009 and (EU) 1194/2012 in the third stage with Regulation (EU) 2019/2020 laying down ecodesign requirements for light sources and separate control gear. This regulation will enter into force on 1 September 2021. In the process, the scope was extended to LED light sources and separate control gear of any kind. In addition, limit values for losses in the so-called standby mode, no-load mode and the standby mode in network operation were added. The energy classes for separate control gears are no longer applicable and the limit values of the former class A2 apply. This means that within the EU, only control gears of energy class $A 2$ and better are permitted.

Furthermore, regulation (EU) 2019/2020 sets higher efficiency requirements for the most common T8 lamps from 1 September 2023, which de facto prohibits the placing of T 8 lamps on the EU market. In addition, most types of halogen lamps will be banned.

The following table summarises the minimum energy efficiency requirements for separate control gears that will apply in the EU from 1 September 2021.

Minimum efficiency пmin.	Control gears for high-pressure discharge lamps
0.78	$P_{L S} \leq 30 \mathrm{~W}$
0.85	$30 \mathrm{~W}<P_{L S} \leq 75 \mathrm{~W}$
0.87	$75 \mathrm{~W}<\mathrm{PLS}^{2} \leq 105 \mathrm{~W}$
0.90	$105 \mathrm{~W}<$ PLS $\leq 405 \mathrm{~W}$
0.92	$\mathrm{PLS}>405 \mathrm{~W}$

PLS $=$ measured light source power

Directive EU 245/2009 stipulates limit values governing the energy consumption of LED light sources and separate control gears, regardless of the technology, and applies to both electromagnetic and electronic control gear. Luminaires as so-called surrounding products are not covered by this regulation if both light source and control gear can be removed for inspection without destroying them. If a luminaire cannot be dismantled in the above sense, the luminaire is considered a light source and is subject to the regulation. The area of application is the Member States of the European Union.

However, outside of the EU it will continue to be possible to market products of all energy classes, as before, in compliance with local laws and directives.

Electronic Ballasts for TC and T Lamps

ELECTRONIC BALLASTS

ELECTRONIC BALLASTS

Operating fluorescent lamps with electronic ballasts yields numerous advantages with regard to efficiency and convenience. Further details are provided on the respective product pages and the technical appendix.

3 Electronic Ballasts for $T C$ and T LampsElectronic ballasts for compact fluorescent lamps80
Electronic ballasts for tubular fluorescent lamps 81-83
Technical details for fluorescent lamps 123-143
General technical details 228-236Glossary237-239

ELXc - Warm Start for TC-F, TC-L Lamps

Electronic built-in ballasts
Casing: metal
Power factor: > 0.96
DC voltage
for operation: 176-264 V
for ignition: 198-264 V
(ELXc 180.866, 280.538: DC voltage
cannot be reduced to 176 V)
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
RFI-suppressed
For luminaires of protection class I

M10/MII

Degree of protection: IP20
For lighting systems with
high switching frequency (> 5/day)
EOL shut down approved acc. to EN 61347 Test 2

Lamp											1-10 VDALI/PUSH	
				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature tc $\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	Luminous factor \%
18	TC-F/-L	2G10/2G11	1×16.0	ELXc 140.862	188140	220-240	A2	-15 to 55	max. 70	M10	19.0	109.0
2×18	TC-F/-L	2G10/2G11	2×16.0	ELXc 240.863	188616	220-240	A2 BAT	-15 to 55	max. 70	M10	35.0	105.3
24	TC-F/-L	2G10/2G11	1×22.0	ELXc 140.862	188140	220-240	A2	-15 to 55	max. 70	M10	27.0	109.0
2×24	TC-F/-L	2G10/2G11	2×22.0	ELXc 240.863	188616	220-240	A2 BAT	-15 to 55	max. 70	M10	51.0	106.8
36	TC-F/-L	2G10/2G11	1×32.0	ELXc 140.862	188140	220-240	A2	-15 to 55	max. 70	M10	35.0	101.0
2×36	TC-F/-L	2G10/2G11	2×32.0	ELXC 240.863	188616	220-240	A2 BAT	-15 to 55	max. 70	M10	71.0	98.7
40	TC-L	2G11	1×40.0	ELXC 140.862	188140	220-240	A2	-15 to 55	max. 70	M10	46.0	104.0
2×40	TC-L	2G11	2×40.0	ELXc 240.863	188616	220-240	A2 BAT	-15 to 55	max. 70	M10	89.0	103.6
55	TC-L	2G11	1×55.0	ELXc 180.866	188144	220-240	A2 BAT	-15 to 55	max. 70	M10	62.0	107.3
2×55	TC-L	2G11	2×50.0	ELXc 254.865	188618	220-240	A2 BAT	-15 to 50	max. 70	M10	112.0	92.9
			2×55.0	ELXC 280.538	188619	220-240	A2 BAT	-15 to 50	max. 70	M11	120.0	100.0
80	TC-L	2G11	1×80.0	ELXc 180.866	188144	220-240	A2 BAT	-15 to 55	max. 70	M10	87.0	97.6
2×80	TC-L	2G11	2×80.0	ELXc 280.538	188619	220-240	A2 BAT	-15 to 50	max. 70	M11	175.0	100.0

[^18]Electronic Ballasts for TC and T Lamps

ELXc - Warm Start for T5 and T8 Lamps

Electronic built-in ballasts
Casing: metal
Power factor: ≥ 0.95
RFI-suppressed
For luminaires of protection class I

Degree of protection: IP20
For lighting systems with
high switching frequency (> 5/day)

M6

M8

M10/M11

ELXc - Warm Start for T5 Lamps

DC voltage
for operation: 176-264 V
for ignition: 198-264 V
(ELXc 149.858, 154.864, 180.866, 280.538:
DC voltage cannot be reduced to 176 V)
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$

For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
EOL shut down approved
acc. to EN 61347 Test 2 (for T5)

Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature tc $\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	Luminous factor \%
For T5 lamps - Casing: M10 and M11												
24	T5	G5	1×22.5	ELXc 140.862	188140	220-240	A2 BAT	-15 to 55	max. 70	M10	27.0	114.0
2×24	T5	G5	2×22.5	ELXc 240.863	188616	220-240	A2 BAT	-15 to 55	max. 70	M10	51.0	107.4
39	T5	G5	1×38.0	ELXc 140.862	188140	220-240	A2 BAT	-15 to 55	max. 70	M10	43.0	107.0
2×39	T5	G5	2×38.0	ELXc 240.863	188616	220-240	A2 BAT	-15 to 55	max. 70	M10	82.0	97.9
49	T5	G5	1×49.0	ELXc 149.858	188095	220-240	A2 BAT	-15 to 55	max. 70	M10	54.0	102.5
2×49	T5	G5	2×49.0	ELXC 249.859	188617	220-240	A2 BAT	-15 to 50	max. 70	M10	113.0	106.6
54	T5	G5	1×54.0	ELXc 154.864	188142	220-240	A2 BAT	-15 to 55	max. 65	M10	59.0	101.1
2×54	T5	G5	2×54.0	ELXc 254.865	188618	220-240	A2 BAT	-15 to 50	max. 70	M10	119.0	106.0
80	T5	G5	1×80.0	ELXc 180.866	188144	220-240	A2 BAT	-15 to 55	max. 70	M10	87.0	97.6
2×80	T5	G5	2×80.0	ELXC 280.538	188619	220-240	A2 BAT	-15 to 50	max. 70	M11	175.0	97.2

[^19]
ELXc EffectLine - Warm start

Warm start for T5 and T8 lamps - Casing: M6, M8 and M10

DC voltage
for operation: 176-264 V
for ignition: 198-264 V
(not possible for T8)
Push-in terminals with lever opener: $0.5-1.5 \mathrm{~mm}^{2}$
EOL shut down approved
acc. to EN 61347 Test 2 (for T5)
EOL shut down (for T8)

Lamp				Electronic ballast							System	
Output W	Type	Base	Power consumption W	Type	Ref. No.	$\begin{aligned} & \text { Voltage AC } \\ & 50,60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Energy efficiency	Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right)$	Casing temperature tc $\left({ }^{\circ} \mathrm{C}\right)$	Casing	Output W	Luminous factor \%
For T5 lamps - Casing: $\mathrm{M6}$ and M10												
14	T5	G5	1×14.3	ELXc 135.220	188921	220-240	A2 BAT	-15 to 55	max. 70	M6	17.0	104.8
2×14	T5	G5	2×14.3	ELXc 235.221	188922	220-240	A2 BAT	-15 to 55	max. 70	M10	34.5	101.9
21	T5	G5	1×20.4	ELXc 135.220	188921	220-240	A2 BAT	-15 to 55	max. 70	M6	23.3	106.9
2x21	T5	G5	2×21.4	ELXc 235.221	188922	220-240	A2 BAT	-15 to 55	max. 70	M10	48.3	104.9
28	T5	G5	1×26.7	ELXc 135.220	188921	220-240	A2 BAT	-15 to 55	max. 70	M6	29.9	107.5
2×28	T5	G5	2×28.7	ELXc 235.221	188922	220-240	A2 BAT	-15 to 55	max. 70	M10	62.1	109.0
35	T5	G5	1×32.6	ELXc 135.220	188921	220-240	A2 BAT	-15 to 55	max. 70	M6	36.5	103.0
2x35	T5	G5	2×35.6	ELXc 235.221	188922	220-240	A2 BAT	-15 to 55	max. 70	M10	78.2	100.8

For T8 lamps - Casing: M8

18	T8	G13	1×16.0	ELXc 136.207	$\mathbf{1 8 8 7 0 4}$	$220-240$	A2 BAT	-20 to 55	max. 60	M8	18.4	105.0
2×18	T8	G13	2×16.0	ELXc 236.208	$\mathbf{1 8 8 7 0 5}$	$220-240$	A2 BAT	-20 to 50	max. 60	M8	35.2	106.0
36	T8	G13	1×32.0	ELXc 136.207	$\mathbf{1 8 8 7 0 4}$	$220-240$	A2 BAT	-20 to 55	max. 60	M8	35.4	97.0
2×36	T8	G13	2×32.0	ELXc 236.208	$\mathbf{1 8 8 7 0 5}$	$220-240$	A2 BAT	-20 to 50	max. 60	M8	69.7	98.0
2×58	T8	G13	2×50.0	ELXc 258.210	$\mathbf{1 8 8 7 0 7}$	$220-240$	A2	-20 to 50	max. 65	M8	109.9	105.0

[^20]
Electromagnetic Ballasts for TC and T Lamps

RELIABLE AND DURABLE

ELECTROMAGNETIC BALLASTS

The following chapter presents Vossloh-Schwabe's broad range of electromagnetic ballasts for compact fluorescent lamps and tubular fluorescent lamps. The variety of available performance properties and shapes satisfies the most diverse design requirements.

Vossloh-Schwabe's electromagnetic ballasts are characterized by extremely tight impedance-value tolerances, which are achieved by individual adjustment of the air gap during the automated production and testing process of the ballasts. This optimises both light output as well as the service life of fluorescent lamps.

3 Electromagnetic Ballasts for TC and T Lamps

Electromagnetic ballasts for compact fluorescent lampsand tubular fluorescent lamps86-90Standard ballasts 86-89
Super low-loss ballasts 90
Technical details for fluorescent lamps
General technical details 228-236
Glossary 237-239

Standard Ballasts
 4-16 W,
 230/240 V

For fluorescent lamps
Shape: 28x41 mm

Vacuum-impregnated with polyester resin Push-in terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Protection class I
tw 130

$\mathbf{2 3 0}$ V, 50 Hz

4	T5 (T16)	G5	170	L 4/6/8.304*	163683	230,50	105	87.5	34	0.32	55/85	B2	2.0	40
2x4	T5 (T16)	G5	155	L 4/6/8.304*	163683	230,50	105	87.5	34	0.32	55/85	B1	2.0	50
5	TC-S	G23	180	L 7/9/11.307*	163694	230,50	105	87.5	34	0.32	60/85	B2	2.0	50
2×5	TC-S	G23	180	LN 13.313*	163711	230,50	105	87.5	34	0.32	55/80	B2	2.0	70
6	T5 (T16)	G5	160	L 4/6/8.304*	163683	230,50	105	87.5	34	0.32	55/85	B1	2.0	50
2×6	T5 (T16)	G5	175	LN 13.313*	163711	230,50	105	87.5	34	0.32	55/80	B1	2.0	65
7	TC-S	G23	175	L7/9/11.307*	163694	230,50	105	87.5	34	0.32	60/85	B2	2.0	50
2×7	TC-S	G23	160	LN 13.313*	163711	230,50	105	87.5	34	0.32	55/80	B2	2.0	70
8	T5 (T16)	G5	145	L 4/6/8.304*	163683	230,50	105	87.5	34	0.32	55/85	B1	2.0	60
2x8	T5 (T16)	G5	155	LN 13.313*	163711	230,50	105	87.5	34	0.32	55/80	B1	2.0	85
9	TC-S	G23	170	L7/9/11.307*	163694	230,50	105	87.5	34	0.32	60/85	B1	2.0	60
2x9	TC-S	G23	140	LN 13.313*	163711	230,50	105	87.5	34	0.32	55/80	B2	2.0	80
10	TC-D	G24d-1	190	LN 13.313*	163711	230,50	105	87.5	34	0.32	55/80	B2	2.0	70
	TC-DD	GR10q	180	LN 13.313*	163711	230,50	105	87.5	34	0.32	55/80	B2	2.0	70
11	TC-S	G23	155	L 7/9/11.307*	163694	230,50	105	87.5	34	0.32	60/85	B1	2.0	80
13	TC-D/TC-T	G24d-1/GX24d-1	175	LN 13.313*	163711	230,50	105	87.5	34	0.32	55/80	B2	2.0	80
	T5 (T16)	G5	165	LN 13.313*	163711	230,50	105	87.5	34	0.32	55/80	B1	2.0	80
16	TC-DD	GR8/GR10q	195	LN 16.316*	163730	230,50	105	87.5	34	0.32	60/125	Bl	2.0	100
$\mathbf{2 4 0 ~ V , ~} 50 \mathrm{~Hz}$														
5	TC-S	G23	180	L 7/9/11.411	164335	240,50	105	87.5	34	0.32	60/85	B2	2.0	50
2x5	TC-S	G23	180	LN 13.413	164342	240,50	105	87.5	34	0.32	60/90	B2	2.0	70
2×6	T5 (T16)	G5	175	LN 13.413	164342	240,50	105	87.5	34	0.32	60/90	B1	2.0	65
7	TC-S	G23	175	L 7/9/11.411	164335	240,50	105	87.5	34	0.32	60/85	B2	2.0	50
2×7	TC-S	G23	160	LN 13.413	164342	240,50	105	87.5	34	0.32	60/90	B2	2.0	70
2x8	T5 (T16)	G5	155	LN 13.413	164342	240,50	105	87.5	34	0.32	60/90	B1	2.0	85
9	TC-S	G23	170	L7/9/11.411	164335	240,50	105	87.5	34	0.32	60/85	B1	2.0	60
2×9	TC-S	G23	140	LN 13.413	164342	240,50	105	87.5	34	0.32	60/90	B2	2.0	80
10	TC-D	G24d-1	190	LN 13.413	164342	240,50	105	87.5	34	0.32	60/90	B2	2.0	70
	TC-DD	GR10q	180	LN 13.413	164342	240,50	105	87.5	34	0.32	60/90	B2	2.0	70
11	TC-S	G23	155	L 7/9/11.411	164335	240,50	105	87.5	34	0.32	60/85	B1	2.0	80
13	TC-D/TC-T	G24d-1/GX24d-1	175	LN 13.413	164342	240,50	105	87.5	34	0.32	60/90	B1	2.0	80
	T5 (T16)	G5	165	LN 13.413	164342	240,50	105	87.5	34	0.32	60/90	B 1	2.0	80

[^21]
Standard Ballasts 14-65 W 230/240/220 V

For fluorescent lamps

Shape: 28x41 mm

Vacuum-impregnated with polyester resin

A

C

E

F

H

D

G

Standard Ballasts 14-65 W, 230/240/220 V

Lamp				Ballast										Capacitor	
Output W	Type	Base	Current mA	Type	Ref. No.	Voltage V, Hz	Drawing	a mm	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	c mm	Weight kg	$\Delta t / \Delta \tan .$ K	Energy efficiency	$\begin{array}{\|c} C_{p} \\ \\ \hline \mu F \end{array}$	Current mA
$\mathbf{2 3 0 ~ V , ~} 50$ Hz															
14	T8 (T26)	G13	395	LN 18.510*	164572	230,50	G	155	140	92	0.80	40/65	B2	4.5	150
15	T8 (T26)	G13	310	LN 15.329*	163861	230,50	E	155	138	60	0.55	50/80	B2	3.5	120
2×15	T8 (T26)	G13	340	LN 30.801*	169645	230,50	E	155	138	60	0.55	55/110	B2	4.0	185
16	T8 (T26)	G13	200	LN 16.316*	163730	230,50	A	105	87.5	34	0.32	60/125	B1	2.0	90
18	TC-D/TC-T	G24d-2/GX24d-2	220	LN 181.319*	163763	230,50	A	105	87.5	34	0.32	60/140	B1	2.0	110
	TC-F/TC-L	2G10/2G11	370	LN 18.510*	164572	230,50	G	155	140	92	0.80	40/65	B1	4.5	120
				LN 18.131*	530941	230,50	E	155	138	60	0.55	55/95	B2	4.5	120
	T-U	2G13	$\begin{array}{\|l\|} \hline 370 \\ \hline 370 \\ \hline \end{array}$	LN 18.131*	530941	230,50	E	155	138	60	0.55	55/95	B2	4.5	120
18/20				LN 18.510*	164572	230,50	G	155	140	92	0.80	40/65	B1	4.5	120
				LN 18.131**	530941	230,50	E	155	138	60	0.55	55/95	B2	4.5	120
22	T-R	G10q	400	LN 30.530*	164680	230,50	G	155	140	92	0.80	45/65	B2	4.5	200
25	T12 (T38)	G13	290	L 25.346*	164013	230,50	E	155	138	60	0.55	45/80	B1	3.5	130
26	TC-D/TC-T	G24d-3/GX24d-3	325	LN 18.131*	530941	230,50	E	155	138	60	0.55	55/95	B1	3.5	140
				LN 26.813*	509502	230,50	A	110	100	45	0.41	55/145	B2	3.5	140
28	TC-DD	GR8/GR10q	320	LN 18.510*	164572	230,50	G	155	140	92	0.80	40/65	B1	3.5	150
				LN 18.131*	530941	230,50	E	155	138	60	0.55	55/95	B1	3.5	150
30	T8 (T26)	G13	365	LN 30.801*	169645	230,50	E	155	138	60	0.55	55/110	B2	4.5	180
32	T-R	G10q	450	LN 36.570*	169779	230,50	G	155	140	92	0.80	35/90	B2	4.0	220
36	TC-F/TC-L	2G10/2G11	430	LN 36.570*	169779	230,50	G	155	140	92	0.80	35/90	B1	4.5	210
				LN 36.511*	164590	230,50	G	155	140	92	0.80	35/95	B1	4.5	210
				LN 36.149*	529029	230,50	E	155	138	60	0.55	55/150	B2	4.5	210
				L 36.132*	535977	230,50	F	155	129	45	0.43	65	-	4.5	210
36-1	T8 (T26)	G13	556	L 361.342*	538072	230,50	B	195	180	110	0.87	50/120	B2	6.5	250
36/40	T-U/T-R	2G13/G10q	430	LN 36.570*	169779	230,50	G	155	140	92	0.80	35/90	B1	4.5	210
				LN 36.149*	529029	230,50	E	155	138	60	0.55	55/150	B2	4.5	210
				L 36.132*	535977	230,50	F	155	129	45	0.43	65	-	4.5	210
	T8 (T26)/T12 (T38)	G13	430	LN 36.570*	169779	230,50	G	155	140	92	0.80	35/90	B1	4.5	210
				LN 36.149*	529029	230,50	E	155	138	60	0.55	55/150	B2	4.5	210
				L 36.132*	535977	230,50	F	155	129	45	0.43	65	-	4.5	210
38	TC-DD	GR10q	430	LN 36.570*	169779	230,50	G	155	140	92	0.80	35/90	B1	4.5	210
				LN 36.149*	529029	230,50	E	155	138	60	0.55	55/150	B2	4.5	210
				L 36.132*	535977	230,50	F	155	129	45	0.43	65	-	4.5	210
	T8 (T26)	G13	430	LN 36.570*	169779	230,50	G	155	140	92	0.80	35/90	B1	4.5	210
				LN 36.149*	529029	230,50	E	155	138	60	0.55	55/150	B2	4.5	210
				L 36.132*	535977	230,50	F	155	129	45	0.43	65	-	4.5	210
58	T-U	2G13	670	LN 58.568*	169389	230,50	D	235	220	160	1.31	35/95	B1	7.0	320
				LN 58.116*	508186	230,50	C	195	180	92	0.80	55/160	B2	7.0	320
58/65	T8 (T26)/T12 (T38)	G13	670	LN 58.568*	169389	230,50	D	235	220	160	1.31	35/95	B1	7.0	320

[^22]
Standard Ballasts 14-65 W, 230/240/220 V

Lamp				Ballast										Capacitor	
Output W	Type	Base	Current mA	Type	Ref. No.	Voltage V. Hz	Drawing	a mm	b mm	c	Weight kg	$\begin{aligned} & \Delta t / \Delta \tan . \\ & K \end{aligned}$	Energy efficiency	Cp uF	Current mA
$\mathbf{2 4 0 ~ V , ~} 50 \mathrm{~Hz}$															
18	TC-F/TC-L	2G10/2G11	370	L 18.936*	534627	240,50	F	155	129	45	0.43	70/140	-	4.5	120
	T-U	2G13	370	L 18.936*	534627	240,50	F	155	129	45	0.43	70/140	-	4.5	120
18/20	T8 (T26)/T12 (T38)	G13	370	L 18.936*	534627	240,50	F	155	129	45	0.43	70/140	-	4.5	120
24	TC-F/TC-L	2G10/2G11	345	L 18.936*	534627	240,50	F	155	129	45	0.43	70/140	-	4.5	150
28	TC-DD	GR8/GR10q	320	L 18.936*	534627	240,50	F	155	129	45	0.43	70/140	-	3.5	150
36/40	T8 (T26)/T12 (T38)	G13	430	L 36.124	534584	240,50	H	155	140	45	0.43	70/150	-	4.5	210
58	T-U	2G13	670	LN 58.722	534252	240,50	C	195	180	92	0.80	60/180	B2	7.0	320
58/65	T8 (T26)/T12 (T38)	G13	670	LN 58.722	534252	240, 50	C	195	180	92	0.80	60/180	B2	7.0	320

$220 \mathrm{~V}, 50 \mathrm{~Hz}$

18	TC-F/TC-L	2G10/2G11	370	L 18.933	534624	220,50	F	155	129	45	0.43	70/160	-	4.5	120
	T-U	2G13	370	L 18.933	534624	220,50	F	155	129	45	0.43	70/160	-	4.5	120
2×18	TC-F/TC-L	2G10/2G11	400	L 36.158	530252	220,50	F	155	129	45	0.43	65	-	4.0	210
18/20	T8 (T26)/T12 (T38)	G13	370	L 18.933	534624	220,50	F	155	129	45	0.43	70/160	-	4.5	120
2x18/20	T8 (T26)/T12 (T38)	G13	430	L 36.158	530252	220,50	F	155	129	45	0.43	65	-	4.0	210
24	TC-F/TC-L	2G10/2G11	345	L 18.933	534624	220,50	F	155	129	45	0.43	70/160	-	4.5	150
26	TC-D/TC-T	G24d-3/GX24d-3	325	L 18.933	534624	220,50	F	155	129	45	0.43	70/160	-	3.5	140
28	TC-DD	GR8/GR10q	320	L 18.933	534624	220,50	F	155	129	45	0.43	70/160	-	3.5	150
36	TC-F/TC-L	2G10/2G11	430	L 36.158	530252	220,50	F	155	129	45	0.43	65	-	4.5	210
36/40	T-U/T-R	2G13/G10q	430	L 36.158	530252	220,50	F	155	129	45	0.43	65	-	4.5	210
	T8 (T26)/T12 (T38)	G13	430	L 36.158	530252	220,50	F	155	129	45	0.43	65	-	4.5	210
38	TC-DD	GR10q	430	L 36.158	530252	220,50	F	155	129	45	0.43	65	-	4.5	210
	T8 (T26)	G13	430	L 36.158	530252	220,50	F	155	129	45	0.43	65	-	4.5	210
58	T-U	2G13	670	L 58.625	164828	220,50	C	195	180	92	0.80	55/155	-	7.0	320
58/65	T8 (T26)/T12 (T38)	G13	670	L 58.625	164828	220, 50	C	195	180	92	0.80	55/155	-	7.0	320
$\mathbf{2 2 0 ~ V , ~} 60$ Hz															
18	TC-F/TC-L	2G10/2G11	370	L 18.121	528582	220,60	F	155	129	45	0.43	65/145	-	4.0	150
	T-U	2G13	370	L 18.121	528582	220,60	F	155	129	45	0.43	65/145	-	4.0	150
2×18	TC-F/TC-L	2G10/2G11	400	L 36.120	509373	220,60	F	155	129	45	0.43	60/170	-	4.0	210
18/20	T8 (T26)/T12 (T38)	G13	370	L 18.121	528582	220,60	F	155	129	45	0.43	65/145	-	4.0	190
2×18/20	T8 (T26)/T12 (T38)	G13	430	L 36.120	509373	220,60	F	155	129	45	0.43	60/170	-	4.0	220
24	TC-F/TC-L	2G10/2G11	345	L 18.121	528582	220,60	F	155	129	45	0.43	65/145	-	4.0	190
26	TC-D/TC-T	G24d-3/GX24d-3	325	L 18.121	528582	220,60	F	155	129	45	0.43	65/145	-	3.0	160
36	TC-F/TC-L	2G10/2G11	430	L 36.120	509373	220,60	F	155	129	45	0.43	60/170	-	4.0	210
36/40	T-U/T-R	2G13/G10q	430	L 36.120	509373	220,60	F	155	129	45	0.43	60/170	-	4.0	220
	T8 (T26)/T12 (T38)	G13	430	L 36.120	509373	220,60	F	155	129	45	0.43	60/170	-	4.0	220
38	TC-DD	GR10q	430	L 36.120	509373	220,60	F	155	129	45	0.43	60/170	-	4.0	220
	T8 (T26)	G13	430	L 36.120	509373	220,60	F	155	129	45	0.43	60/170	-	4.0	230
58	T-U	2G13	670	L 58.657	164870	220,60	C	195	180	92	0.80	55/140	-	6.0	320
58/65	T8 (T26)/T12 (T38)	G13	670	L 58.657	164870	220,60	C	195	180	92	0.80	55/140	-	6.0	320

[^23]
Super Low-loss
 Ballasts
 18-65 W, 230 V

For fluorescent lamps
Shape: 28x41 mm

Vacuum-impregnated with polyester resin

Push-in terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Protection class I
tw 130
Energy efficiency: A2, minimum EU energy efficiency requirements as of 2017

Lamp				Ballast									Capacitor	
Output W	Type	Base	Current mA	Type	Ref. No.	Voltage V, Hz	a mm	b mm	c mm	Weight kg	$\begin{aligned} & \Delta t / \Delta \tan . \\ & \mathrm{K} \end{aligned}$	Energy efficiency	Cp 敢	Current mA
$230 \mathrm{~V}, 5$	Hz													
2×18/20	T8 (T26)/T12 (T38)	G13	400	LNN 36.648	560664	230,50	235	220	160	1.35	25/40	A2	4.5	210
$36 / 40$	T8 (T26)/T12 (T38)	G13	430	LNN 36.648	560664	230,50	235	220	160	1.35	25/40	A2	4.5	210
58/65	T8 (T26)/T12 (T38)	G13	670	LNN 58.960	569031	230,50	235	220	160	1.35	50/80	A2	7.0	320

Electromagnetic Ballasts for TC and T Lamps

COMPACT AND VERSATIIE

VS LAMPHOLDERS FOR COMPACT FLUORESCENT LAMPS

Vossloh-Schwabe provides a broad range of lampholders for single-ended compact fluorescent lamps, with regard to which the numerous fixing methods make just about any luminaire design possible.

As compact fluorescent lamps generate considerably less heat in comparison to incandescent lamps, the advantages provided by thermoplastics can be fully utilized for lampholder design.

Almost all VS lampholders for compact fluorescent lamps are made of thermoplastic PBT and therefore bear the T marking T140, which refers to the maximum base temperature in accordance with EN 61199 (VDE 0715 T9). The use of this highly heatresistant material was born of close cooperation between Vossloh-Schwabe and the world's leading lamp manufacturers that also use PBT for producing lamp bases. In connection with fatigue-resistant, stainless steel lamp mounting springs, harmonizing the casing material ensures a permanent and secure lamp fit.

3 Lampholders and Accessories for TC Lamps
2G7 lampholders 94
G23 lampholders 95-96
2G11 lampholders 97
Accessories 98-99
GX53-1 lampholders, accessories 100
Technical details for fluorescent lamps 123-143
General technical details 228-236
Glossary 237-239

2G7 Lampholders

For single-ended compact fluorescent lamps TC-SEL

2G7 push-fit lampholder
Casing: PBT GF, white, T140, nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit)
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit)
Rear fixing hole for self-tapping screw
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Locking of the lampholder by a 15° turn
Weight: 13.7 g , unit: 500 pcs.
Type: 35610

Ref. No.: 109235

2G7 push-fit lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit)
Push-fit foot for cut-out $10 \times 20 \mathrm{~mm}$
for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 18 g , unit: 500 pcs.
Type: 35613
Ref. No.: 500574

2G7 surface-mounted lampholder
Casing: PBT GF, white, T140, nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit)
Fixing holes for screws M4
Lateral and rear fixing holes for self-tapping screws acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Weight: 18.1 g , unit: 500 pcs.
Type: 35611

Ref. No.: 109238

2G7 surface-mounted lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3

Weight: 14 g , unit: 500 pcs.
Type: 35612
Ref. No.: 109240

G23 Lampholders

For single-ended compact fluorescent lamps TC-S

If the central hole is used for mounting,
make sure there is no risk of rotation.

G23 push-fit lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Split pins for wall thickness up to 1.2 mm
Central fixing hole for screw M3
Weight: 12 g , unit: 500 pcs .
Type: 35004
Ref. No.: 101298

G23 surface-mounted lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Central fixing hole for screw M3
Weight: 12.4 g , unit: 500 pcs .
Type: 35006

Ref. No.: 101306

G23 lampholder

For push-fit on track
Casing: PBT GF, white, T140, nominal rating: 2/250 Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Fixing holes for screws M4
Central fixing hole for screw M3
Weight: 14 g, unit: 500 pcs.
Type: 35007

Ref. No.: 101310

G23 lampholder, for cover caps (see p. 186-188)
External thread 40×2.5 IEC 60399
Casing: PBT GF, white, T140, nominal rating: 2/250 Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Central fixing hole for screw M3
When using the central hole for mounting
additional depressions for anti-rotation pips
have to be provided.
For screw rings (see p. 200)

Weight: 16.3 g, unit: 500 pcs.
Type: 35010

Ref. No.: 101320

G23 lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral pivots for bracket 105820
Central fixing hole for screw M3
Weight: 11 g , unit: 500 pcs.
Type: 35011
Ref. No.: 101324

G23 surface-mounted lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Front fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Weight: 11.9 g , unit: 500 pcs.
Type: 35012

Ref. No.: 108898

G23 push-fit lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for wall thickness $0.8-1.3 \mathrm{~mm}$
Central fixing hole for screw M3
Weight: 11 g , unit: 500 pcs.
Type: 35051

Ref. No.: 101344

G23 push-fit lampholder
Casing: PBT GF, white, T140
Nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Front split pins for wall thickness $0.8-1.3 \mathrm{~mm}$
Central fixing hole for screw M3
Weight: 12 g , unit: 500 pcs.
Type: 35052
Ref. No.: 101346

2G11 Lampholders

For single-ended compact fluorescent lamps TC-L

2G11 surface-mounted lampholder
Casing: PBT GF, white, T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit)
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit)
Base fixing holes for screws M4
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Weight: 13.7 g, unit: 500 pcs.
Type: 36050

Ref. No.: 101485

2G11 surface-mounted lampholder
Casing: PBT GF, white, T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit)
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit)
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Weight: 12.7 g , unit: 500 pcs.
Type: 36051

Ref. No.: 101489

2G11 push-fit lampholder
Casing: PBT GF, white, T140, nominal rating: 2/500 Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit) Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit) Lamp position: vertical
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Weight: 14.3 g , unit: 500 pcs.
Type: 36052

Ref. No.: 101491

2G11 push-fit lampholder
Casing: PBT GF, white, T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$ (lamp circuit)
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$ (starter circuit)
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST4.2-C/F
Front fixing holes for screws M3
Option for base wiring
Weight: 14.1 g , unit: 500 pcs.
Type: 36053
Ref. No.: 101493

Accessories

For single-ended compact fluorescent lamps

The luminaire manufacturer is responsible for the right choice of accessories.

Lamp supports for TC-S, TC-SEL lamps
Height adjustable H: 17.5/20.5/23.5 mm
Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$
for wall thickness up to 1 mm
Weight: 0.4/0.8/0.8 g, unit: 500 pcs.
Type: 35060
Ref. No.: 105775 foot, PC, white
Ref. No.: 105776 bracket, PC, crystal-clear, UV-stabilised

$\oint_{-05.5+0.1}$

Ref. No.: 105931 foot, PC, white
Ref. No.: 105776 bracket, PC, crystal-clear, UV-stabilised
Lamp supports for TC-S, TC-SEL lamps
Height adjustable H: 27.5/30.5/33.5 mm
Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$
for wall thickness up to 1 mm
Weight: 0.7/0.8/0.8 g, unit: 500 pcs.
Type: 35061

Lamp supports for TC-L lamps
Height adjustable H: 21/24/27 mm
Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$
for wall thickness up to 1 mm
Weight: 0.4/1.3/1.1 g, unit: 500 pcs.
Type: 35760
Ref. No.: 105775 foot, PC, white
Ref. No.: 105777 bracket, PC, crystal-clear, UV-stabilised
Ref. No.: 106417 bracket, PC, white, UV-stabilised

Lamp supports for TC-L lamps
Height adjustable H: $31 / 34 / 37 \mathrm{~mm}$
Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$
for wall thickness up to 1 mm
Weight: 0.7/1.3/1.1 g, unit: 500 pcs.
Type: 35761
Ref. No.: 105931 foot, PC, white
Ref. No.: 105777 bracket, PC, crystal-clear, UV-stabilised
Ref. No.: 106417 bracket, PC, white, UV-stabilised

Lamp supports for TC-S, TC-SEL lamps
Material: stainless steel
Weight: 1.3 g, unit: 500 pcs.
Type: 93056 push-fit foot for $\varnothing 5.5 \mathrm{~mm}$
Ref. No.: 509522

Material: stainless steel
Weight: 1.5 g , unit: 500 pcs.
Type: 93058 push-fit foot for $\varnothing 5.5 \mathrm{~mm}$
Ref. No.: 509520

Lamp support for TC-L lamps
Material: PC, white, UV-stabilised
Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$
for wall thickness up to 1 mm
Weight: 0.7 g , unit: 500 pcs.
Type: 36060

9
$\Phi_{\varnothing 5,5+0,1}$

Ref. No.: 108878

\qquad

GX53-1 Lampholders, Accessories

For single-ended compact fluorescent lamps with integrated ballasts

GX53-1 lampholder
Casing: PC, white, T100, nominal rating: 2/250
Push-in terminals for through-wiring
for single-core leads: $0.5-1 \mathrm{~mm}^{2}$
for stranded leads:
$0.75 \mathrm{~mm}^{2}$, tinned lead ends
Fixing holes for screws M3
Weight: 12.8 g , unit: 200 pcs.
Type: 11000
Ref. No.: 530878

Cord grip/cover plate for GX53-1 lampholders
For leads HO3VVH2-F 2X0.75, tinned lead ends
For luminaires of protection class II
Material: PC, white
Weight: 1.6 g , unit: 200 pcs.
Type: 97278
Ref. No.: 504939

Surface-mounted installation ring
For wood or furniture panels
Material: PC, white
Weight: 10.4 g , unit: 100 pcs.
Type: 97277
Ref. No.: 504938

LAMPHOLDERS FOR T5, T8 AND T12 LAMPS

VS LAMPHOLDERS FOR DOUBLEENDED FLUORESCENT LAMPS

Vossloh-Schwabe's comprehensive range of lampholders for doubleended fluorescent lamps covers all major fixing methods. Push-through, push-fit and built-in lampholders with split pins or catches are available just as models with screw and push fittings.

High-grade materials for the contacts and thermoplastics for the casings guarantee reliable contacts and a long service life of the components.

Special G13 lampholders for the USA and Canada can be found under www.unvlt.com/products/legacy/lampholders.
G5 lampholders 104-107
G5 lampholders, accessories 104-106
G5 lampholders, degree of protection IP65/IP67 107
G13 lampholders 108-115
G13 push-through lampholders 108
G13 push-fit lampholders 109
G13 push-fit twin lampholders 109
G1 3 built-in lampholders 110-112
G13 surface-mounted lampholders 112
Accessories for T8 and T12 lamps 113
G13 lampholders, degree of protection IP65/IP67, accessories 114-115
Technical details for fluorescent lamps 123-143
General technical details 228-236
Glossary 237-239

G5 Lampholders, Accessories

For fluorescent lamps T5 (T16)

Max. permitted temperature T_{m}
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$

G5 push-through/surface-mounted lampholder Lamp axis push-through lampholder: 13.2 mm Lamp axis surface-mounted lampholder: 15.2 mm Casing: PC, white, T110
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$ Fixing slot for screw M3
Weight: 3.2 g , packaging unit: 1000 pcs.
Type: 09105

Ref. No.: 100305

G5 built-in lampholder
Casing: PC, white, T110
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Weight: 2.6 g , packaging unit: 1000 pcs .
Type: 09205

Ref. No.: 100310

G5 built-in lampholder
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips
Weight: 2.8 g , packaging unit: 1000 pcs.
Type: 09404
Ref. No.: 505732

G5 built-in lampholders
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Weight: 2.9/3.3 g, packaging unit: 1000 pcs .
Type: 09405/09406
Ref. No.: 505733
Ref. No.: 505734 with spring adjustment

G5 push-hhrough lampholders
Lamp axis: 15 mm
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$ Weight: $3.5 / 3.4 \mathrm{~g}$, packaging unit: 1000 pcs . Type: 09420/09421

Ref. No.: 505737 with stop

Ref. No.: 505739 without stop

G5 push-through lampholders
Lamp axis: 20 mm
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$ Weight: 4.1 g , packaging unit: 1000 pcs.
Type: 09432/09433
Ref. No.: 545933 with stop
Ref. No.: 545935 without stop

G5 push-through lampholders
Lamp axis: 25 mm
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.5-1.5 \mathrm{~mm}$
Weight: 4.5 g , packaging unit: 1000 pcs.
Type: 09434/09435
Ref. No.: 545937 with stop
Ref. No.: 545939 without stop

G5 push-fit lampholder
Lamp axis: 14 mm
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: $2 / 500$
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear fixing clips for wall thickness $0.6-1 \mathrm{~mm}$ Base or lateral wiring
Weight: 3.3 g, packaging unit: 1000 pcs.
Type: 09440
Ref. No.: 505747

G5 push-fit lampholder

Lamp axis: 18 mm
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear fixing clips for wall thickness $0.6-1 \mathrm{~mm}$
Base or lateral wiring
Weight: 3.9 g , packaging unit: 1000 pcs.
Type: 09446
Ref. No.: 545894

G5 push-fit lampholder
Lamp axis: 23 mm
Casing: PBT GF, white, rotor: PBT GF, white T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear fixing clips for wall thickness $0.6-1 \mathrm{~mm}$ Base or lateral wiring
Weight: 4.2 g , packaging unit: 1000 pcs.
Type: 09447
Ref. No.: 545896

G5 push-fit lampholder
Lamp axis: 11.8 mm
Casing: PBT GF, white, rotor: PBT GF, white
T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness up to 1 mm Lateral wiring
Weight: 3.1 g , packaging unit: 1000 pcs.
Type: 09460

Ref. No.: 505751

G5 lampholder

For push-fit onto the lamp
Casing: PBT GF, white, T130
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Pin support for reliable contact
Lamp support 109685 (see below)
Weight: 3.7 g , packaging unit: 1000 pcs.
Type: 09170

Ref. No.: 109686

Lamp support for lamps $\varnothing 16$ mm
Material: zinc-coated polished steel
Fixing hole for screw M3.5
Weight: 1.3 g , packaging unit: 1000 pcs.
Type: 94088
Ref. No.: 109685

Lamp support for lamps $\varnothing 16$ mm
Material: PC, white, UV-stabilised
Push-fit foot for cut-out $\varnothing 5.5 \mathrm{~mm}$
Weight: 1 g , packaging unit: 500 pcs.
Type: 84001
Ref. No.: 500757

$\phi_{ه .5+0.1}$

G5 Lampholders, Degree of Protection IP65/IP67

For fluorescent lamps T5 (T 16)
 For luminaires of protection class I and II

Lampholders protected against dust and jet of water (IP65)
Dust and watertight lampholders (IP67
Pin support for reliable contact
With spring adjustment

G5 push-fit lampholder
Casing: PC, white, interior part: PBT GF T140, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for wall thickness: 1.4-2 mm
Weight: 12.7 g, packaging unit: 250 pcs
Type: 84108 system 151
Ref. No.: 534073

Foot gaskets for system 151
Weight: $1 / 1.1 \mathrm{~g}$
Unit: 1000 pcs.
Type: 98004 degree of protection IP65
Ref. No.: 108267 material: cellular rubber, black
Type: 98011 degree of protection IP67
Ref. No.: 504078 material: silicone, transparent

Screw ring for systems 151
Ring: PBT GF, white, gasket: silicone
Weight: 11.8 g , packaging unit: 250 pcs
Type: 84103
Ref. No.: 529836

Max. permitted temperature T_{m} on the rear side of the lampholder: $110^{\circ} \mathrm{C}$

G13 Push-through Lampholders

For fluorescent lamps T8 (T26), T12 (T38)

Lampholders with integrated starter holder have
push-in twin terminals for the lamp circuit and push-in terminals for the the starter circuit.
Pin support for reliable contact
Max. permitted temperature T_{m}
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$
G13 push-through lampholders for lamps T8 and T12 Lamp axis: 23 mm
Casing: PC, white, frontplate: PBT GF, white
T140, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$
Weight: 6 g , packaging unit: 1000 pcs.
Type: 27700/27701
Ref. No.: 109330 with stop
Ref. No.: 109331 without stop

G13 Rotoclic push-through lampholders
for lamps T8 and T12
Lamp axis: 23 mm
Casing: PC, white, frontplate: PBT GF, white
T140, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.4-2 \mathrm{~mm}$
Weight: 6.8 g , packaging unit: 1000 pcs.
Type: 27700/27701
Ref. No.: 546641 with stop
Ref. No.: 546642 without stop

G13 push-through lampholders for lamps T8 and T12 Lamp axis: 31 mm
Casing: PC, white, rotor: PBT, white
T130, nominal rating: $2 / 500$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.6-2 \mathrm{~mm}$
Weight: 9.9 g , packaging unit: 1000 pcs.
Type: 28500/28501
Ref. No.: 100591 with stop
Ref. No.: 100593 without stop

G13 push-through lampholders for lamps T8 and T12 With starter attachment, lamp axis: 31 mm Casing: PC, white, rotor: PBT, white T130, nominal rating: $2 / 250$
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.6-2 \mathrm{~mm}$
Weight: 16 g , packaging unit: 500 pcs .
Type: 28600/28601
Ref. No.: 100596
with stop
Ref. No.: 100598 without stop

G13 Push-fit Lampholders

For fluorescent lamps T8 (T26), T 12 (T38)

Lampholders with integrated starter holder are equipped with big rotor and have push-in twin terminals for the lamp circuit and push-in terminals for the the starter circuit. Pin support for reliable contact

G13 push-fit lampholder for lamps T8 Lamp axis: 23.5 mm
Casing: PC, white, rotor: PBT GF, white
T130, nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness up to 1.2 mm Lampholder foot/luminaire: IP40
Weight: 5.8 g , packaging unit: 1000 pcs.
Type: 27350

Ref. No.: 100548

G13 push-fit lampholder for lamps T8 and T12 Lamp axis: 30 mm
Casing: PC, white, rotor: PBT GF, white
T130, nominal rating: 2/250
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Base split pins for wall thickness up to 1.2 mm Lampholder foot/luminaire: IP40
Weight: 5.9 g , packaging unit: 1000 pcs.
Type: 27360

Ref. No.: 100552

G13 push-fit lampholder for lamps T8 and T12 Lamp axis: 25 mm
Casing: PC, white, rotor: PBT GF, white T130, nominal rating: 5/500
Lateral and base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for luminaire cut-out $10 \times 20 \mathrm{~mm}$ for wall thickness $0.4-1 \mathrm{~mm}$
Weight: 6 g, packaging unit: 500 pcs.
Type: 28921
Ref. No.: 108438

G13 twin lampholders for lamps T8 and T12 Lamp axis: 25 mm
Distance between two lamp axes: 76 mm Casing: PC, white, rotor: PBT GF, white T130, nominal rating: 2/500
Base push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Push-fit foot for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 21 g , packaging unit: 200 pcs.
Type: 22604/22602 without starter attachment
Ref. No.: 108816
with stop
Ref. No.: 100487
without stop

Max. permitted temperature T_{m} on the rear side of the lampholder: $110^{\circ} \mathrm{C}$
T-Marking acc. to IEC
IP50 version: push-fit foot with gasket

G13 Built-in Lampholders

For fluorescent lamps T8 (T26), T12 (T38)

Lampholders with integrated starter holder
are equipped with big rotor and have push-in twin terminals for the lamp circuit and push-in terminals for the the starter circuit.
Pin support for reliable contact
(except for type 485)

G13 built-in lampholders for lamps T8 and T12 Lampholder thickness: 13 mm
Casing: PC, white, frontplate/rotor: PBT GF, white T130, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm Weight: $5 / 5.5 \mathrm{~g}$, packaging unit: 1000 pcs.
Type: 47105/47106
Ref. No.: 101685
Ref. No.: 101690 with spring adjustment

G13 built-in lampholders for lamps T8 and T12 Lampholder thickness: 9.5 mm
Casing: PC, white, frontplate/rotor: PBT GF, white T130, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Weight: $5 / 5.5 \mathrm{~g}$, packaging unit: 1000 pcs.
Type: 47505/47506

Ref. No.: 101749

Ref. No.: 101753 with spring adjustment

G13 built-in lampholders for lamps T8 and T12 Lampholder thickness: 13 mm
Casing: PC, white, frontplate/rotor: PBT GF, white T130, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: 5/6 g, packaging unit: 1000 pcs.
Type: 47100/47102
Ref. No.: 101674
Ref. No.: 101681 with spring adjustment

G13 built-in lampholders for lamps T8 and T12 Lampholder thickness: 9.5 mm
Casing: PC, white, frontplate/rotor: PBT GF, white T130, nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: $5 / 5.5 \mathrm{~g}$, packaging unit: 1000 pcs.
Type: 47500/47502
Ref. No.: 101738
Ref. No.: 101740
with spring adjustment

G13 built-in lampholder for lamps T 8 and T 12
Lampholder thickness: 10.7 mm
Casing: PC, white, frontplate/rotor: PBT GF, white T130, nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips
Weight: 4.7 g , packaging unit: 1000 pcs.
Type: 47504

Ref. No.: 101745

G13 lampholder
For push-fititing onto lamps T12
Lampholder thickness: 9.5 mm
Casing: PC, white, T 110
Front cover plate: PBT GF, white
Nominal rating: 2/250
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: 10.5 g , packaging unit: 1000 pcs.
Type: 47700

Ref. No.: 101781

G13 lampholder
For push-fitting onto lamps T8 Lampholder thickness: 9.5 mm
Casing: PC, white, T110
Front cover plate: PBT GF, white
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing hole for screw M3
Weight: 5.3 g , packaging unit: 1000 pcs.
Type: 47900
Ref. No.: 101784

Starter Holders and Terminal Blocks, Accessories

G13 built-in lampholder with lamp lock
for lamps T8 and T12
Contacts on both sides
Casing: PBT GF, white, T130, nominal rating: 2/500 Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Weight: 12.9/18 g, packaging unit: 500 pcs.
Type: 46100/46101

Ref. No.: 101643
Ref. No.: 101647 with spring adjustment

G13 built-in lampholders for lamps T8 and T12
Casing: PC, white, T110
Nominal rating: 2/500
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
5 rotation stops
Weight: 9/10.6 g, packaging unit: 1000 pcs.
Type: 48500/48501
Ref. No.: 101787
Ref. No.: 101789 with spring adjustment

G 13 Surface-mounted Lampholders

For fluorescent lamps T8 (T26), T12 (T38)

Pin support for reliable contact
(except for type 485)
Max. permitted temperature T_{m}
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$

G13 surface-mounted lampholder for lamps T8 and T12
Lamp axis: 25.5 mm
Casing: PC, white, rotor: PBT GF, white, T130
Nominal rating: 2/500
Push-in twin terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing hole: $\varnothing 3.8 \mathrm{~mm}$
Weight: 7.2 g , packaging unit: 500 pcs.
Type: 27722
Ref. No.: 100572

G13 surface-mounted lampholders for lamps T8 and T12 Lamp axis: 25 mm
Casing: PC, white, T 110 , nominal rating: $2 / 500$
Screw terminals: 0.5-2.5 mm²
Bracket: zinc-coated polished steel
Fixing slots for screws M4
5 rotation stops
Weight: 26/28.1 g, packaging unit: 500 pcs.
Type: 48502/48503

Ref. No.: 101791

Ref. No.: 101793
with spring adjustment

Accessories

For lampholders for fluorescent lamps T8 (T26), $\mathbf{T 1 2}$ (T38)

The luminaire manufacturer is responsible for
the right choice of accessories.

Lamp supports for lamps T8
Material: zinc-coated polished steel
Fixing hole for screw M4
Weight: 4.3 g , packaging unit: 500 pcs.
Type: 20400

Ref. No.: 100442

Lamp supports for lamps T8
Material: PC, crystal-clear
Fixing hole for screw M4
Weight: 2 g , packaging unit: 1000 pcs.
Type: 20501
Ref. No.: 100448

Cable holder
Material: PA, white
Push-fit foot for cut-out $\varnothing 4 \mathrm{~mm}$
for wall thickness $0.6-1.2 \mathrm{~mm}$
Weight: 0.2 g, packaging unit: 5000 pcs.
Type: 97147
Ref. No.: 109086
回 $04.0,01$

Cable holder
For the automatic luminaire wiring
and manual wiring
Material: PC, white
Degree of protection IP50
Weight: 0.5 g , packaging unit: 5000 pcs.
Type: 97117
Ref. No.: 108845

G 13 Lampholders, Degree of Protection IP65/IP67

For fluorescent lamps T8 (T26), T12 (T38)
For luminaires of protection class I and II

Lampholders protected against dust and jet of water (IP65)
Dust and watertight lampholders (IP67)
Pin support for reliable contact
with spring adjustment

G13 push-fit lampholders for lamps T8/T12
Casing: PC, interior part: PBT GF
Rotor: PBT GF, white, T140
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing clips for wall thickness $1.4-2 \mathrm{~mm}$
Screw rings see next page
Weight: 17.3 g , packaging unit: 500 pcs.
Type: 84172 system 163
Ref. No.: 107958 casing white
Ref. No.: 108666 casing grey
G13 push-fit twin lampholders for lamps T8/T12
Casing: PC, interior part: PBT GF
Rotor: PBT GF, white, T140
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing clips for wall thickness $1.4-2 \mathrm{~mm}$
Screw rings see next page
Weight: 34.2 g , packaging unit: 250 pcs.
Type: 84174 system 164
Ref. No.: 107960 casing white
Ref. No.: 108669 casing grey
G13 push-fit lampholders for lamps T8/T12
Casing: PC, interior part: PBT GF, T140
Nominal rating: 2/500
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Fixing clips for wall thickness $1.4-2 \mathrm{~mm}$
With slot insertion
Screw rings see next page
Weight: 14.5 g , packaging unit: 250 pcs.
Type: 84175 system 165
Ref. No.: 108608 casing white
Ref. No.: 108614 casing grey
Foot gaskets
For lampholder systems 163, 164, 165
Weight: $1 / 1.1 \mathrm{~g}$
For degree of protection IP65
Material: cellular rubber
Type: 98004
Ref. No.: 108267
For degree of protection IP67
Material: silicone, transparent
Type: 98011
Ref. No.: 504078
Max. permitted temperature T_{m}
on the rear side of the lampholder: $110^{\circ} \mathrm{C}$

G13 lampholder for lamps T8/T12
Casing: PC, white, interior part: PBT GF, T140
Nominal rating: 2/500
Screw fixing foot with tapped holes M4
Screw rings see below
With slot insertion
Weight: 14 g , packaging unit: 250 pcs.
Type: 84105 system 152
Ref. No.: 521123

Foot gasket for degree of protection IP65/IP67
For lampholder system 152
Material: EPDM, black
Weight: 1.4 g , packaging unit: 1000 pcs.
Type: 98085
Ref. No.: 106094

Screw Rings for G 13 Lampholders, Degree of Protection IP54, IP65, IP67

For lampholder systems 152, 163, 164, 165

Screw rings
Ring: PBT GF, gasket: silicone
Weight: 17/20 g, packaging unit: 500/250 pcs.
Type: 84122 for lamps T8
Ref. No.: 103710 white
Ref. No.: 103709 grey
Type: 84123 for lamps 112 or
for lamps 18 with protection tube $\varnothing 38 \mathrm{~mm}$
Ref. No.: 103712 white
Ref. No.: 103711 grey

OPTIMUM

 START WITH COMPONENTS MADE BY VS

STARTER HOLDERS AND TERMINAL BLOCKS, ACCESSORIES

Vossloh-Schwabe provides a comprehensive range of miscellaneous accessories for operating fluorescent lamps.

Starter holders

Starters are needed for lamp circuits operated with electromagnetic ballasts. VS provides a number of starter holders with various designs for this purpose. Almost all starter holders are made of polycarbonate and qualify for a T 110 temperature rating.

Terminal blocks

Furthermore, Vossloh-Schwabe's product range also includes connection terminals, some of which feature the VDE-approved IDC method in addition to the well-known and installation-friendly push-in connectors. The connection terminals therefore make it possible to automate luminaire wiring and thus wire up several terminals using a single cable.

The range is rounded off by built-in rocker switches.
Starter holders, accessories 118
Terminal blocks, accessories 119-121
Built-in rocker switches 122
Technical details for fluorescent lamps 123-143
General technical details 228-236
Glossary237-239

Starter Holders, Accessories

For starters acc. to DIN VDE 0712 part 101, IEC 60155

Material: PC, white
T110, nominal rating: $2 / 250$

Starter holders
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$, single-core
Front and rear split pins for wall thickness up to 1.2 mm
Rear of starter holder/luminaire: IP40
Weight: 2.8 g, packaging unit: 1000 pcs.
Type: 02110/02111

Ref. No.: 100061
Ref. No.: 100063 with central stud for
luminaires of protection class II

Starter holder

Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm Lateral split pins for wall thickness up to 1.25 mm
Rear of starter holder/luminaire: IP40
Weight: 3.7 g , packaging unit: 1000 pcs.
Type: 02120
Ref. No.: 100064

Starter holder
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Rear split pins for wall thickness up to 1.2 mm
Rear of starter holder/luminaire: IP40
Weight: 3.3 g , packaging unit: 1000 pcs.
Type: 43000
Ref. No.: 101627

Starter Holders and Terminal Blocks, Accessories

Terminal blocks
Casing: PC, white, T85
Nominal rating: 450 V
Primary connection: screw terminals $2.5 \mathrm{~mm}^{2}$
Secondary connection:
push-in twin terminals $1.5 \mathrm{~mm}^{2}$
(with IDC contacts: $1 \mathrm{~mm}^{2}$) push-in terminal $0.5 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5

Base split pins for wall thickness $0.6-1.2 \mathrm{~mm}$

Type	Ref. No.	IDC	Number of poles	Earth-contact connection	Weight (g)	Unit (pcs.)
40660	$\mathbf{5 4 3 7 9 3}$	no	3-poles	not earthed	5.7	1000
40662	$\mathbf{5 4 3 7 9 5}$	no	3-poles	earth strap M4	8.4	1000
40666	$\mathbf{5 4 3 8 0 0}$	no	3-poles	earth finger	8.3	1000

Terminal blocks with fuse holder
Material: PC, white, T70
nominal rating: 250 V
Primary connection: screw terminals $2.5 \mathrm{~mm}^{2}$
Secondary connection:
push-in twin terminals $1.5 \mathrm{~mm}^{2}$
(with IDC contacts: $1 \mathrm{~mm}^{2}$)
push-in terminal $0.5 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads HO5V-U 0.5
With retaining clip for fuses $5 \times 20 \mathrm{~mm}$
With integrated fuse on request
Base split pins for wall thickness $0.6-1.2 \mathrm{~mm}$

Starter Holders and Terminal Blocks, Accessories

Terminal blocks
Casing: PC, grey, T85
Nominal rating: 450 V
Primary connection:
screw terminals $2.5 \mathrm{~mm}^{2}$
Secondary connection:
push-in twin terminal $1.5 \mathrm{~mm}^{2}$
(with IDC contacts: $1 \mathrm{~mm}^{2}$) push-in terminal $0.5 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads H05V-U 0.5
Base split pins for wall thickness $0.6-1.2 \mathrm{~mm}$

Type	Ref. No.	IDC	Number of poles	Earth-contact connection	Weight (g)	Unit (pcs.)
40560	$\mathbf{5 4 3 7 7 0}$	no	3-poles	not earthed	1000	
40562	$\mathbf{5 4 3 7 7 2}$	no	3-poles	earth strap M4	8.7	1000
40566	$\mathbf{5 4 3 7 7 7}$	no	3-poles	earth finger	8.8	1000

Terminal blocks with fuse holder
Material: PBT, grey, T70
Nominal rating: 250 V
Primary connection: screw terminals $2.5 \mathrm{~mm}^{2}$
Secondary connection:
push-in twin terminals $1.5 \mathrm{~mm}^{2}$
(with IDC contacts: $1 \mathrm{~mm}^{2}$)
push-in terminal $0.5 \mathrm{~mm}^{2}$
For the automatic luminaire wiring:
IDC terminals for leads HO5V-U 0.5
With retaining clip for fuses $6 \times 25 \mathrm{~mm}$
With integrated fuse on request
Base split pins for wall thickness $0.6-1.2 \mathrm{~mm}$

Type	Ref. No.	IDC	Number of poles	Eath-contact connection	Weight (g)	Unit (pcs.)
40570	543781	no	3 -poles	not earthed	11	500
40572	543783	no	3 -poles	earth strap M4	11.7	500
40576	543787	no	3 -poles	earth finger	11.8	500

-

Built-in Rocker Switches

Built-in rocker switch 1-pole
For cut-out $16 \times 26 \mathrm{~mm}$
Casing: PC, white, T100
Contact pillar and rocker: PBT, white
Terminal: nichrome steel
Nominal rating: 6(2)/250~
Push-in terminals: $0.5-1 \mathrm{~mm}^{2}$
Lateral fixing clips for wall thickness $0.6-1 \mathrm{~mm}$
Weight: 7.2 g , unit: 500 pcs.
Type: 20200
Ref. No.: 100437

Electronic ballasts 124-131
Assembly instructions for mounting and installing 125-131
Circuit diagrams131
Electromagnetic ballasts 132-136
Assembly instructions for mounting and installing 133-136 136
Circuit diagrams
Connection terminals 137
Lampholders for fluorescent lamps 138
Lamp table 139-141
Key to lamp designations 141
Energy efficiency classification 142-143
General technical details 228-236
Glossary 237-239

Technical Details - Components for Fluorescent Lamps

Ballasts for fluorescent lamps

The operation of a fluorescent lamp depends on a ballast that stabilises the lamp's preheat current after connection to the mains and, in conjunction with the starter, also supplies the required lamp ignition voltage after preheating. After ignition, the ballast then serves to limit the lamp current. As fluorescent lamps are characterised by a negative characteristic current-voltage curve, lamp current stabilisation is essential with regard to both the lamp's stable operation and a long service life, which is also dependent on compliance with the starting conditions (preheat current and ignition voltage). Unfavourable starting conditions cause damage to the electrodes every time the lamp is started and thus reduce the lamp's service life. Furthermore, care should be taken to prevent crossdischarge in the electrode area during preheating, which also shortens lamp service life.

Electromagnetic (inductive) ballasts have to be operated in conjunction with starters for lamp ignition and capacitors for blind current compensation. In addition, capacitors for RFI suppression will also be required for certain circuits. Electronic ballasts do not require any additional components.

Electronic ballasts (EB)

VS electronic ballasts are designed for mains voltages of 220 V to 240 V (exceptions are devices for the North American market where the nominal mains voltage is 120 V or 277 V) and are used to operate fluorescent lamps at high frequencies. The lamps are ignited with an internally generated ignition voltage, thereby removing the need for an external starter. The power factor $(\lambda)>0.95$ also removes the need for compensation, unlike with electromagnetic ballasts. Luminaires fitted with electronic ballasts are characterised by low energy consumption as they draw substantially less system power than conventional, inductive applications. This is firstly because the lamp consumes less power to achieve the same luminous flux and secondly because the internal loss of an electronic ballast only amounts to approx. 8% to 10% of the lamp's output. Furthermore, thanks to their modern circuitry, the power input of VS electronic ballasts remains constant even in the event of mains voltage fluctuations, thus ensuring permanently low energy consumption.

VS electronic ballasts permit a broad range of applications. For instance, the VS product range includes many ballast types for multiple lamp operation. These ballasts reduce installation and component costs and thus enable particularly efficient luminaires. Twin-lamp electronic ballasts permit so-called master-slave operation. The lamps of two single-lamp luminaires are operated by a twin-lamp electronic ballast that is built into the so-called master luminaire. The lamp of the slave luminaire is electrically connected to the electronic ballast.

Technical Details - Components for Fluorescent Lamps

The use of electronic ballasts makes a lighting system both more convenient and efficient to operate:

- reduced power consumption (up to 30%) at undiminished light output
- 50% longer service life
- stabilised lamp output
- overvoltage protection
- no stroboscopic effect
- flicker-free lamp start
- no need for a starter or capacitor
- low wiring effort
- no radiated electromagnetic interference
- low self-heating due to minimal power loss
- automatic shutdown of defective lamps
- automatic restart once the lamp has been changed

Vossloh-Schwabe electronic ballasts are developed on the basis of the latest technological and component standards and are produced using state-of-the-art technology, whereby consideration is taken of our customers' quality standards in our quality assurance system.

Assembly Instructions for Electronic Ballasts

For mounting and installing of electronic ballasts for fluorescent lamps

Mandatory regulations

EN 61347-1 Lamp controlgear - part 1: general and safety requirements

EN 61347-2-3 Lamp controlgear - part 2-3: particular requirements for a.c. supplied electronic ballasts for fluorescent lamps

EN 60929 AC-supplied electronic ballasts for tubular fluorescent lamps

DIN VDE 0100 Erection of low voltage installations

EN 60598-1 Luminaires - part 1: general requirements and tests
EN 61000-3-2 Electromagnetic compatibility (EMC) - part 3:
maximum values - main section part 2: maximum values for mains harmonics (device input current up to and including 16 A per conductor)

EN 55015 Maximum values and methods of measurement for RFI suppression
in electrical lighting installations and similar electrical appliances
EN 61547 Installations for general lighting purposes - EMC immunity requirements

Technical Details - Components for Fluorescent Lamps

Descriptions of VS electronic ballasts (EBs)

ELXc ballasts (warm start)

ELXc ballasts have a power factor of better than 0.95 and cover the complete capacity range. ELXc ballasts ensure the lamp is started following a defined lamp electrode preheating period of approx. 1-2.5 seconds using a fixed ignition voltage. This particularly gentle lamp start makes over 20,000 lamp starts possible. ELXc ballasts should be used for applications with high switching frequencies (e.g. hotels or offices) where energy savings as well as low maintenance costs are desired. The average service life of these ballasts totals 50,000 hours with a failure rate of $\leq 0.2 \%$ per 1,000 operating hours.

To guarantee trouble-free operation and a long service life of the various types of electronic ballast, attention should be paid to the regulations and mounting instructions. In addition, the installation instructions for lighting systems must be observed when installing luminaires with electronic ballasts.

Mechanical mounting

Surface Solid, flat surface for good heat dissipation required.
Avoid mounting on protruding surfaces.

Mounting location
Electronic ballasts must be protected against moisture and heat.
Installation in external luminaires: water protection rate of ≥ 4
(e.g. IP54 required)

Fastening
With M4 screws in the designated holes

Heat transfer If the ballast is destined for installation in a luminaire, sufficient heat transfer must be ensured between the ballast and the luminaire casing.
Electronic ballasts should be mounted with the greatest possible clearance to heat sources or lamps. During operation, the temperature measured at the tc point of the ballast must not exceed the specified maximum value.

Supplement for independent electronic ballasts

Mounting positionAny

Clearance Min. of 0.10 m from walls, ceilings, insulation
Min. of 0.10 m from other electronic ballasts
Min. of 0.25 m from sources of heat (lamp)

Surface Solid; device must not be allowed to sink into insulation materials

Technical specifications

Operating voltage range
AC: 220 to $240 \mathrm{~V}(\pm 10 \%)$
DC: please observe the specifications on the individual product pages

Preheat time ELXc ballasts $t=0.5$ or 1.5 to 2.5 seconds (warm start)

Leak current $\leq 0.5 \mathrm{~mA}$ per electronic ballast

Technical Details - Components for Fluorescent Lamps

Product features

Overheating VS EBs for fluorescent lamps are not protected against overheating

Overvoltage protection
AC: up to 48 hours at UNAC $=320 \mathrm{~V}$
DC: no disorders occur with input voltages of up to UNDC 285 V .
UNDC voltages in excess of 288 V destroy the ballast.

Shutdown of defective lamps
During starting operation, the electronic ballast will detect whether a lamp is connected.
If no lamp is present, the ballast will cancel the starting operation. Deactivated lamps or interrupted electrodes are detected and lead to the high-frequency supply being switched off after an unsuccessful ignition attempt. Changing a lamp during operation will lead to the high-frequency supply being switched off.

EOL effect Up to now, it has not been possible to conclusively reproduce the end-of-life effect under laboratory conditions. However, it can be qualitatively described for fluorescent lamps as follows: when the emitter material of the cathode (i.e. the filament in conventional bi-pin lamps) has been fully consumed or has otherwise lost its emitting power, the emission of electrons is hampered, which leads to a voltage drop at the cathode. Frequent cold starts accelerate active emitter loss.

Operating a lamp with a constant current (an electronic ballasts (EB) provides a nearconstant current) results in high dissipation losses that also cause the lamp base and lampholder to heat up and can even cause damage to both. This is often referred to as the EOL effect; from an electrical point of view, this is manifested in the so-called "partial rectifier effect".

The EOL cut-out ensures that a ballast is safely switched off and the lamp base does not overheat at the end of a lamp's service life

EN 61347-2-3:2011 + AC:2011 describes three possible tests.
The first are now in widespread use and are described in more detail here.
The third test is not conducted at VS.

1. EOL Test 1 (61347-2-3:2011 + AC:2011 17.2)

Asymmetric pulse test
2. EOL Test 2 (61347-2-3:2011 + AC:2011 17.3)

Asymmetric power test
3. EOL Test 3 (61347-2-3:2011 + AC:2011 17.4)

Exposed filament test

The first two tests attempt to simulate the rectifier effect:

- Test 1 pulse switching of rectifying effect
- Test 2 by applying a DC voltage that is constantly higher than required by the lamp.

VS EBs are capable of suitably assessing the altered voltage signal in comparison to normal operation so as to meet EOL requirements.

Protection against transient mains peaks
Values are in compliance with EN 61547 (interference immunity)
11 kV for AC and 0.5 kV for DC and control conductors).

Technical Details - Components for Fluorescent Lamps

Electrical installation

Wiring The wiring between the mains, electronic ballast and lamp must comply with the respective circuit diagram.
The electronic ballast must be earthed using a toothed washer or similar (protection class I, ignition help, compliance with RFI/BCl standards).
To ensure compliance with RFl-suppression limits, mains conductors should not be wired in parallel to high-frequency carrying lamp conductors; maximum clearance should be ensured and all conductors marked with an * must be kept short. As a general rule, a maximum conductor length should not be exceeded when using conventional conductors (see table on page 131 for precise details). Luminaire must be tested for compliance with the RFI suppression limits stipulated by EN 55015.

Conductors must not exceed 3 m in length in the event of master-slave operation.
Dimmable electronic ballasts are unsuitable for master/slave operation.

Cord grip EBs with cord grip can be used with the following conductors, for instance:

Designation	Lead type
Mains lead	HO3VV-F $3 \times 0.75 \mathrm{~mm}^{2}$ or NYM $3 \times 1.5 \mathrm{~mm}^{2}$
Control lead	HO3VV-F $2 \times 0.5 \mathrm{~mm}^{2}$
Mains and control lead in one lead	HO3VV-F $5 \times 0.75 \mathrm{~mm}^{2}$
Lamp lead	H05VV-F $4 X 1 \mathrm{~mm}^{2}$ or $5 \times 1 \mathrm{~mm}^{2}$

Connection terminals for automatic luminaire wiring (ALF connections)

- Use copper (not stranded) wire
- Rquired diameter for push-in connection $0.5-1 \mathrm{~mm}^{2}$
- Stripped lead length 8-9 mm
- Required diameter for IDC $0.5 \mathrm{~mm}^{2}$, max. $\varnothing 2 \mathrm{~mm}$ including insulation, no wire stripping required; mounting requires a special tool

Push-in terminals The integrated terminals can be used with flexible or rigid leads with a crosssection of $0.5-1.5 \mathrm{~mm}^{2}$. The stripped lead length ranges between $8.5-9.5 \mathrm{~mm}$ for a 3.5 mm terminal grid.

Error current Impulse-resistant leak-current protection must be installed. Distribute the luminaires to phases L1, L2 and L3; install tri-phase FI switches. If permissible, install FI switches with 30 mA leak current; connect no more than 15 luminaires as Fl switches can be triggered at half the leak current value.

Tri-phase connection of luminaires with EB

- Prior to operating newly installed lighting systems: check the mains voltage is appropriate to the electronic ballast's mains voltage range (AC, DC).
- The N-type conductor must be properly connected to all luminaires or ballasts.
- Conductors can only be connected or disconnected if the ballast is disconnected from the mains. Attention: N-type conductors must never be disconnected individually or as the first element.
- Insulation resistance test: from L to PE (L and N must not be connected)
- The neutral conductor must be reconnected after completion of the test.

Power factor/compensation
Luminaires with electronic ballasts do not require compensation:
power factor ≥ 0.95.

Technical Details - Components for Fluorescent Lamps

Selection of automatic cut-outs

Dimensioning automatic cut-outs
High transient currents occur when an EB is switched on because the capacitors have to load. Lamp ignition occurs almost simultaneously. This also causes a simultaneous high demand for power. These high currents when the system is switched on put a strain on the automatic conductor cut-outs, which must be selected and dimensioned to suit.

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641, part 11, for B and C characteristics.

No. of electronic ballasts (see the table on pages 131)
The maximum number of VS ballasts applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible ballasts must be reduced by 20% for multi-pole fuses. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m of conductor [$2.5 \mathrm{~mm}^{2}$] from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to $800 \mathrm{~m} \Omega$ increases the possible number of ballasts by 10%.

EB output voltage Electronic ballasts bear the information "UOUT" on their type plates. All subsequently connected components must be designed for this EB output voltage. When using T5 lamps, any components connected to the output side of the EB must be approved for a voltage of $\geq 430 \mathrm{~V}$ (especially lampholders).

Lamps and dimmed operation
For lighting systems with dimmable electronic ballasts, Vossloh-Schwabe recommends that fluorescent lamps always be replaced as a full complement to maintain uniform lighting levels and colour impressions. New lamps must be burnt in at maximum brightness for approx. 100 hours.
Without restrictions, VS electronic ballasts can be used to operate $T 8$ fluorescent lamps.

Potential interference with \mathbb{R} systems
Operating lamps at frequencies of 20 to 50 kHz can cause interference with infrared systems (remote controls, sound transmission, personal pager systems).
Countermeasures: optical filters, switching to infrared systems with higher carrier frequencies (over 400 kHz).

Electromagnetic Compatibility (EMC)
Vossloh-Schwabe's electronic ballast range was developed in accordance with valid EMC standards (interference, interference immunity and mains harmonics) and specially designed to ensure safe compliance with the limiting values.
It is assumed that that any remarks regarding conductor wiring and conductor length in the instructions for installing electronic ballasts in luminaires or for independent ballasts will be observed.

Vossloh-Schwabe electronic ballasts are also tested in commercially available luminaires in addition to the CISPR 30 sample luminaires.

Mains harmonics: the maximum values laid down in EN 61547 (Interference Immunity) are satisfied.

Technical Details - Components for Fluorescent Lamps

Additional information

Information on the installation of electronic ballasts for optimising EMC
To ensure good radio interference suppression and the greatest possible operating safety, the following points should be observed when installing electronic ballasts:

- Conductors between the EB and the lamp (HF conductors) must be kept short (reduction of electromagnetic interference). High-potential lamp conductors must be kept as short as possible, in particular with tubular lamps. Lamp conductors of this kind are labelled with an * in the wiring diagram on the type plate (see page 131).
- Mains and lamp conductors must be kept separate and if possible should not be laid in parallel to one another. The distance between HF and mains conductors should be as large as possible, ideally $>5 \mathrm{~cm}$. (This prevents the induction of interference between the mains and lamp conductors.)
- The mains conductor within the luminaire must be kept short (to reduce the induction of interference).
- Devices must be properly earthed. EBs require secure contacts to the luminaire casing or must be earthed using a PE connection. This PE connection should be effected using an independent conductor to achieve better dissipation of the leak current. EMC improves at frequencies greater than 30 MHz .
- The mains conductor must not be laid too close to the EB or the lamp (this is especially important in the event of through-wiring).
- Mains and lamp conductors must not be crossed. Should this be impossible to avoid, conductors should be crossed at right angles to one another to avoid inducing interference between mains and HF conductors.
- Should conductors be wired through metal parts, such conductors must always be additionally shielded (e.g. with an insulating sleeve or grommet).

Temperature Reference point temperature t_{c}
The safe operation of electronic ballasts is dependent on the maximum permissible temperature not being exceeded at the measuring point. Vossloh-Schwabe has determined a casing temperature measuring point - t_{c} max. - on all EB casings. To avoid shortening the service life or diminishing operating safety, the stipulated maximum temperature must not be exceeded at this tc point. This point is determined by testing the convertor during normal, IEC-standardised operation at the specified ambient temperature (ta), which is also indicated on the type plate. As both the design-related ambient temperature and the ballast's inherent heat, as determined by the installed load, are subject to great variation, the casing temperature should be tested at the tc point under real installation conditions.

Ambient temperature ta
The ambient temperature - as specified on every EB - denotes the permissible temperature range within the luminaire.

Reliability and service life
If the max. temperature at the tc reference point (as specified on the type plate and the technical documentation of the ballast) is not exceeded, the defined service life can be expected to be achieved, assuming a switching cycle of 165 minutes on and 15 minutes off. See page 126 for service life details regarding the various electronic ballast families.

Emergency lighting

All Vossloh-Schwabe EBs that are suitable for DC voltage operation can be used in emergency lighting systems. Consideration must, however, be taken of system requirements.

Technical Details - Components for Fluorescent Lamps

Circuit diagrams for Vossloh-Schwabe electronic ballasts

The circuit diagrams shown here are wiring examples for Vossloh-Schwabe electronic ballasts, whereby the number and configuration of the contacts differ. See the table below for details.

Explanation of circuit diagrams for Vossloh-Schwabe electronic ballasts (see above)

Electronic	ballasts	Lamp	Electronic ballasts															Max. lead lengthhot* cold $(\mathrm{m} / \mathrm{pf})$ $(\mathrm{m} / \mathrm{pf})$		Operation frequencykHz	Output voltage UOUT V	$\begin{gathered} \hline \text { THD } \\ \% \\ \hline \end{gathered}$					
Ref. No.	Type	Quantity	Term	12	\| 3	4	5		7	8	9	$10 \mid$	11	12	13	14	15			$\begin{aligned} & \mathrm{EB} / \mathrm{au} \\ & \mathrm{~B} \\ & (10 \mathrm{I}) \\ & \hline \end{aligned}$			$\begin{aligned} & \text { utomatic } \\ & \left\|\begin{array}{l} \text { B } \\ (16 A) \end{array}\right\| \end{aligned}$	$\begin{aligned} & \text { c cutouts } \\ & \left\lvert\, \begin{array}{l} \text { C } \\ (10 \mathrm{OA}) \end{array}\right. \\ & \hline \end{aligned}$	C (16A)		
ELXc																											
188095	ELXc 149.858	1	x^{*}	x^{*}	x	x	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	28	330	< 10	11	18	18	30	
188140	ELXC 140.862	1	x^{*}	x^{*}	x	x	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	45	250	< 10	11	18	18	30	
188142	ELXc 154.864	1	x^{*}	x^{*}	x	x	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	34	300	< 10	9	15	15	25	
188144	ELXC 180.866	1	x^{*}	x^{*}	x	x	-	-	-	-	-	-	-	-	-	-	-	1/100	2/200	45	300	< 10	9	15	15	25	
188616	ElXc 240.863	2	x^{*}	x^{*}	x	-	x	x	\times	-	-	-	-	-	-	-	-	1/100	2/200	46	360	< 15	7	12	12	20	
188617	ELXc 249.859	2	x^{*}	x^{*}	x	x	x	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	2/200	43	480	< 10	7	12	12	20	
188618	ELXC 254.865	2	x^{*}	x^{*}	x	-	x	x	x	-	-	-	-	-	-	-	-	1/100	2/200	43	390	< 10	7	12	12	20	
188619	ElXc 280.538	2	x^{*}	x^{*}	x	\times	x	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	2/200	50	420	< 10	-	10	-	10	
188704	ELXC 136.207	1	x	x	-	-	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	-	-	48	350	<20	11	18	18	30	
188705	ELXc 236.208	2	x	x	\times	x	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	-	-	45	250	< 20	11	18	18	30	
188707	ELXc 258.210	2	X	x	x	x	x^{*}	x^{*}	-	-	-	-	-	-	-	-	-	-	-	48	350	<20	7	12	12	19	
188921	ELXc 135.220	1	x^{*}	x^{*}	x	x	-	-	-	-	-	-	-	-	-	-	-	1/100	2/150	41	300	< 10	11	18	18	30	
188922	ELXc 235.221	2	X	X	x	X	x	x^{*}	x^{*}	-	-	-	-	-	-	-	-	1/100	2/150	41	300	< 10	11	18	18	30	

Electromagnetic ballasts

Electromagnetic (inductive) ballasts are active components that in conjunction with starters preheat the lamp electrodes, supply the ignition voltage and stabilise lamp currents during operation. Series or parallel capacitors are required to compensate blind current.

For installation in luminaires, consideration must be taken of the mains voltage and mains frequency, the dimensions and maximum thermal values as well as any potential noise generation. To fulfil these special requirements, Vossloh-Schwabe provides a large variety of different ballasts.

VS magnetic ballasts have been optimised with regard to their magnetic fields and loads so that usually so that noise cannot usually be perceived. However, the luminaire design can cause magnetic vibrations to affect large areas. When designing luminaires, it might therefore be necessary to fit a concertina section or grooves to prevent vibrations from spreading and thus from noise being generated.

The service life of an inductive ballast is mainly determined by the material chosen for the winding insulation. The maximum winding temperature denotes the temperature (tw) that the insulation will withstand for a period of 10 years given continuous operation under rated conditions. This maximum winding temperature must not be exceeded in real conditions to ensure the ballast can achieve its full service life. The winding temperature of the ballast that is measured in the luminaire is made up of the ambient temperature of the luminaire, the thermal conditions within the luminaire and the power loss of the ballast. The Δt marking on the ballast type plate provides a measure of the power loss of the ballast. In addition to this, the power loss of ballast-lamp circuits is measured in accordance with EN 50294. This test method forms the basis for the CELMA energy classification of ballasts and is also applied in European Regulation 245/2009/EG "Definition of eco-design requirements regarding fluorescent lamps without an integrated ballast, high-pressure discharge lamps as well as ballasts and luminaires in their operation and the invalidation of Directive 2000/55/EC" (see pages 142-143 for further details).

As a result of their design features, inductive ballasts cause leak current that is discharged via the earth conductor of the luminaire. The maximum permissible leak current for protection class I luminaires is 1 mA , a value of which all Vossloh-Schwabe electronic ballasts fall clearly short. Values of max. 0.1 mA are measured per electromagnetic ballast. However, as these values accumulate with the number of installed ballasts, this should be taken into account when dimensioning the F1 protective switch.

Starters for fluorescent lamps

As mentioned above, the operation of fluorescent lamps also requires starters in addition to ballasts. A distinction is made between glow starters, which are also available with automatic cut-outs, and electronic starters. The correct choice of voltage and power range is crucial. Starters are available for 220-240 V and for $110-127 \mathrm{~V}$ mains voltage. The latter are also required for twin-lamp operation (e.g. $2 \times 18 \mathrm{~W}$ at 230 V).

Assembly Instructions for Electromagnetic Ballasts

For mounting and installing of electromagnetic ballasts for fluorescent lamps

Mandatory regulations

DIN VDE 0100 Erection of low voltage installations
EN 60598-1 Luminaires - part 1: general requirements and tests

EN 61347-1 Operating devices for lamps - part 1: general and safety requirements
EN 61347-2-8 Operating devices for lamps - part 2-8: special requirements for ballasts
for fluorescent lamps
EN $60921 \quad$ Ballasts for fluorescent tube lamps - performance requirements

EN 50294 Methods for measuring the total input power of ballast-lamp circuits
EN 55015 Maximum values and methods of measurement for RFI suppression
in electrical lighting installations and similar electrical appliances
EN 61000-3-2 Electromagnetic Compatibility (EMC) - part 3:
maximum values - main section part 2: maximum values for mains harmonics
(device input current up to and including 16 A per conductor)
EN 61547 Installations for general lighting purposes - EMC immunity requirements

Technical specifications

Operating voltage range
VS ballasts can be operated at the specified mains voltage within a tolerance range of $\pm 10 \%$

Leak current $\leq 0.1 \mathrm{~mA}$ per ballast
Error current Impulse-resistant leak-current protection must be installed. Distribute the luminaires to phases L1, L2 and L3; install tri-phase FI switches. If permissible, install FI switches with 30 mA leak current; connect no more than 15 luminaires as Fl switches can be triggered at half the leak current value.
Power factor Inductive ballasts: $\lambda \geq 0.5$
Parallel-compensated ballasts: $\lambda \geq 0.85$

Compensation VS recommends the use of parallel capacitors owing to their technical advantages and power balance.

Possible interference with IR systems
Are not known to occur

Technical Details - Components for Fluorescent Lamps

Mechanical mounting

Mounting position
Any

Mounting location
Ballasts are designed for installation in luminaires or comparable devices. Independent ballasts do not need to be installed in a casing.

Fastening \quad Preferably using screws $\varnothing 4 \mathrm{~mm}$

Maximum temperatures
The stipulated winding temperature (tw 130, tw 140 and tw 150 , respectively) must not be exceeded during normal operation. The corresponding maximum values $\left(232{ }^{\circ} \mathrm{C}, 248{ }^{\circ} \mathrm{C}\right.$ and $264^{\circ} \mathrm{C}$, respectively) must be observed during anomalous operation. These values must be checked by measuring resistance during operation.

Temperature increase

The lamp current flowing through the ballast generates a power loss that leads to an increase in winding temperature. The Δt values for normal and abnormal operation provide
a measure of this temperature increase. The Δt values are ascertained using standardised connections for measurement and are provided on the ballast type plate in Kelvin.

Example: $\Delta t=55 \mathrm{~K} / 140 \mathrm{~K}$:
The first Δt value indicates the temperature increase for normal operation at the lamp's operating current. The second value, 140 K in this case, denotes the temperature increase of the winding that results from the current that flows when the lamp's discharge path is short-circuited. The current that flows in this state is the preheat current through the lamp's electrodes.

Electromagnetic compatibility (EMC)

Interference Interference voltage measurements have to be taken at the connection terminals for luminaires with magnetic ballasts as these are systems that operate with lamp voltages of under 100 Hz . These low-frequency interference voltages are generally not critical with magnetic ballasts.

Interference immunity
Thanks to the robust design and choice of materials, magnetic ballasts provide a high degree of interference immunity and are not impaired by admissible mains power interference.

Mains Harmonics
After every zero crossing of the lamp current, fluorescent lamps experience a re-ignition peak as the lamps go out for a brief (imperceptible) moment. These re-ignition peaks generate mains harmonics that are smoothed by the ballast's impedance. The right design, i.e. determining the operating point of the magnetic ballast, ensures mains harmonics are limited to the maximum values permitted by EN 61000-3-2. VS electromagnetic ballasts all comply with the stipulated maximum values.

Technical Details - Components for Fluorescent Lamps

Selection of automatic cut-outs for VS electromagnetic ballasts

Dimensioning automatic cut-outs
When a ballast is switched on, high transient current peaks occur due to parasite capacitances that can accumulate with the number of luminaires. These high system switch-on currents put a strain on the automatic conductor cut-outs. For this reason, only surge-current-proof automatic cut-outs should be used for lighting systems.

Release reaction The release reaction of the automatic conductor cut-outs comply with VDE 0641 part 11, for B and C characteristics.

No. of ballasts The following values are meant as guidelines only and may vary depending on the respective lighting system. The maximum number of VS ballasts applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible ballasts must be reduced by 20% for multi-pole fuses. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m of [$2.5 \mathrm{~m}^{2}$] conductor from the power supply to the distributor and a further 15 m to the luminaire). Doubling circuit impedance to $800 \mathrm{~m} \Omega$ increases the possible number of ballasts by 10%. The values quoted in the following tables are guidelines and can be affected by systemspecific factors.

Possible number of ballasts connected to automatic cut-outs for compact fluorescent lamps (single lamp operation)

Lamp output	$10 \mathrm{~A}(\mathrm{~B})$			$16 \mathrm{~A}(\mathrm{~B})$
	Inductive	Parallel compensation	Inductive	Parallel compensation
$5 / 7 / 8 / 9 / 10 / 11 / 13$	50	90	80	130
$18(T C-L)$	27	32	43	51
$18($ TC-D	40	65	65	110
24	25	32	40	51
26	27	32	43	51
36	23	32	37	51

Possible number of ballasts connected to automatic cut-outs for tubular and U-shaped fluorescent lamps (single lamp operation)

Lamp output	$10 \mathrm{~A}(\mathrm{~B})$	$16 \mathrm{~A}(\mathrm{~B})$		
	Inductive	Parallel compensation	Inductive	Parallel compensation
$4 / 6 / 8 / 10$	50	90	80	130
13	45	80	70	115
$15 / 18 / 20$	27	32	43	51
$30 / 36 / 38 / 40$	23	32	37	51
$58 / 65$	15	20	22	32
70	13	18	20	30

Technical Details - Components for Fluorescent Lamps

Reliability and service life

Provided the specified maximum values for the winding temperature are complied with, a service life of 10 years can be expected. Failure rate: $\leq 0.025 \% / 1,000$ hours

Electrical installation

Connection terminals (combination terminals)

- Use copper (not stranded) wire
- Required diameter for push-in connection $0.5-1 \mathrm{~mm}^{2}$
- Stripped lead length 8 mm
- Required cross-section for IDC zone $0.5 \mathrm{~mm}^{2}$; max. $\varnothing 2 \mathrm{~mm}$ including Insulation, no wire stripping required; mounting requires a special tool

Push-in terminals The integrated terminals can only be used with rigid leads.
Rigid leads: $0.5-1.5 \mathrm{~mm}^{2}$. The stripped lead length totals 8 mm .
Wiring The wiring between the mains, ballasts and lamps must comply with the respective circuit diagram.

Circuit diagrams for the operation of fluorescent lamps with Vossloh-Schwabe electromagnetic ballasts

Inductive single circuit

Inductive tandem circuit

Parallel-compensated single circuit with high-reactance transformer

Parallel-compensated single circuit

Parallel-compensated tandem circuit

Parallel-compensated tandem circuit with high-reactance transformer

Technical Details - Components for Fluorescent Lamps

Connection terminals

In the interest of ensuring firm contacts and long component service life, Vossloh-Schwabe uses only top-quality materials for plastic or metal parts during the production of connection terminals. These quality features apply to both Vossloh-Schwabe's luminaire connection terminals as well as to the terminals fitted to ballasts and lampholders.

Notes on connection terminals on electronic ballasts

Vossloh-Schwabe electronic ballasts are fitted with installation-friendly push-in connectors . In addition, many models for linear fluorescent lamps are also available with IDC terminals (for solid conductors $0.5 \mathrm{~mm}^{2}$) and supplementary push-in terminals (for solid conductors $0.5-1 \mathrm{~mm}^{2}$), stripped length $8-9 \mathrm{~mm}$. IDC terminals permit automated luminaire wiring and testing using the ALF system and are thus particularly efficient.

Notes on connection terminals on electromagnetic ballasts

Standard issue Vossloh-Schwabe electromagnetic ballasts are fitted with installation-friendly push-in terminals. The terminals are designed for use with solid conductors with cross-sections of $0.5-1.5 \mathrm{~mm}^{2}$ and are approved for current loads of up to 16 A. The lead stripping length totals $7-9 \mathrm{~mm}$ for push-in terminals. On request, many ballasts can also be provided with screw terminals (current load up to 16 A) for conductor cross-sections of 0.5 to $2.5 \mathrm{~mm}^{2}$.

Notes on connection terminals on lampholders

Vossloh-Schwabe usually equips lampholders for T and TC lamps as well as starter lampholders with installation-friendly push-in terminals for solid conductors of $0.5-1 \mathrm{~mm}^{2}$. Most lampholders are fitted with twin push-in terminals and thus permit through-wiring. The required lead stripping length amounts to 8-9 mm for all types.

IDC terminals

In order to fully exploit the vast potential for rationalisation offered by automated wiring and testing, a totally new component family was developed that is equipped with the VDE-tested IDC terminal technology. This technology has already been used very successfully on a large scale in other branches of industry. This connection technology dispenses with the stripping of conductors that is required for the push-in, screw or crimping methods. The tried-and-tested IDC terminal technology has created the foundation for efficient automation as it ensures both high connection quality and rapid contacting. Components equipped in this fashion make it possible to through-wire several terminals with a single conductor. This constitutes a further economic advantage as it significantly reduces the required conductor lengths. Furthermore, this design principle makes it possible to use adapters to simply and reliably make electrical contact from above for a VDE-compatible final luminaire inspection.

ALF connection

Height: 12 mm
Release by twisitng and pulling the conductor at the same time

1. Insert release tool above the conductor
2. Pull out the conductor

Stripping the conductor for push-in terminal 0.5-1 mm: $8-9$ mm

IDC/Push-in terminal for electromagnetic ballasts

Stripping the conductor for push-in terminal 0.5-1 mm^{2} : $7-9 \mathrm{~mm}$

Lampholders for Fluorescent Lamps

Lampholders for compact fluorescent lamps

Vossloh-Schwabe produces the majority of lampholders for TC lamps using PBT, a thermoplastic material. This highly heat-resistant material is responsible for the T 140 temperature rating. Leading lamp manufacturers also use PBT for the lamp bases they produce. This material harmonisation in conjunction with fatigue-free, stainless steel lamp mounting springs ensures a permanently secure lamp fit.

Lampholders for double-ended fluorescent lamps

VS lampholders for T lamps are characterised by a number of technical features that guarantee a high degree of reliability and safety. The heat-resistant PBT rotor with which most VS lampholders are fitted is a recognised trademark. In addition to the lampholders with the field-tested large rotor, VS also provides a generation of lampholders featuring innovative "Rotoclic" rotor technology. This VS technology constitutes a further milestone in the development of highly heat-resistant rotor systems.
Among the special features of this technology is a T140 temperature rating thanks to a front plate made entirely of PBT as well as a clearly audible click when the lamp is inserted or replaced. As a result, the motion of furning the lamp from "replacement" to "operating" position is aided acoustically. In addition to this, VS produces a further series of lampholders with a rotor-like function, whose front plates are also made of highly heat-resistant PBT and have similarly been given a T 140 temperature rating. The maximum permissible temperature at the back of all lampholders is $T_{m} 110^{\circ} \mathrm{C}$. Another key feature common to all VS lampholders is a highly effective support for the lamp pin that reliably prevents any base pin deflection, even with older lamps, and guarantees a durable and firm contact.

Push-through lampholders

Push-through lampholders are inserted from below through a cut-out in the luminaire casing and are secured by lateral catches. This type of lampholder is frequently used in luminaires on which the lampholder remains visible from the outside, e.g. in so-called strip lighting. The electrical leads are laid beneath the sheet metal level. Luminaire directive EN 60598-1 Para. 8.2 must be observed with regard to the luminaire.

Push-fit lampholders

This lampholder type, which is frequently found in surface-mounted ceiling and built-in luminaires, is pushed into the luminaire casing from above. The lampholder foot should protrude by no more than 4 mm to match the usual height of the spacing cams in the luminaire casing. These lampholders are mostly wired above the luminaire casing to the side of the lampholder. However, there are also lampholders on which the wiring runs through the lampholder foot, with the leads laid beneath the luminaire casing.

Built-in lampholders

This design is also predominantly used for recessed ceiling and surface-mounted luminaires. However, unlike push-fit lampholders, built-in lampholders are usually fitted at the ends of the luminaire boxes. In addition to the usual fixing with split pins attached to the rear, there are also countless versions with fixing clips, push-fit studs or screw-in holes, which are also available with spring-loaded length compensation. Built-in lampholders offer luminaire designers a wealth of scope regarding the choice of lamp position in relation to the reflector. This enables great variation in light distribution as the lampholder does not dictate the distance of the centre of the lamp from the metal casing.

Surface-mounted lampholders

The fastening system of surface-mounted lampholders usually consists of screws or rivets above a fixing level, along which the wiring is also laid. As this type of installation is usually too costly nowadays for large unit numbers, these lampholders are used almost exclusively for special applications, e.g. displays or illuminated advertisements.

VS lampholders for the UL market and UL approved leads are available for all common lamp types. Further information can be found at www.unvlt.com/ products/legacy/lampholders.

Push-through lampholder

Push-fit lampholder

Built-in lampholder

Surface-mounted

 lampholder

Lamp Table - Fluorescent Lamps

Lamp type/lamp base	Base	Output (W)	Max. length (C) acc. to IEC			
	G24q-1	$\begin{aligned} & \hline 10 \\ & 13 \end{aligned}$	$\begin{array}{\|c} \hline 95 \\ 130 \end{array}$			
	G24q-2	18	140			
	G24q-3	26	160			
	GX24q-1	13	90			
	GX24q-2	18	110			
	GX24q-3	$\begin{aligned} & 26 \\ & 32 \\ & \hline \end{aligned}$	$\begin{aligned} & 130 \\ & 145 \end{aligned}$			
	GX24q-4	42	155			
	GX24q-5	57	191			
	GX24q-6	70	219			
	G24d-1	$\begin{array}{r} \hline 8 \\ 10 \\ 13 \end{array}$	$\begin{gathered} 73^{*} \\ 95 \\ 130 \end{gathered}$			
	G24d-2	18	140			
	G24d-3	26	160			
TC-T GX24d-1 ${ }^{-2}$	GX24d-1	13	90			
包	GX24d-2	18	110			
$\bigcirc-1$	GX24d-3	26	130			
	G23	$\begin{aligned} & \hline 5 \\ & 7 \\ & 9 \\ & 11 \end{aligned}$	$\begin{array}{\|r\|} \hline 85 \\ 115 \\ 145 \\ 215 \\ \hline \end{array}$			
	2G7	$\begin{array}{r} 5 \\ 7 \\ 9 \\ 9 \\ \hline 11 \end{array}$	$\begin{array}{\|r\|} \hline 85 \\ 115 \\ 145 \\ 215 \\ \hline \end{array}$			
	2G8-1	$\begin{gathered} \hline 60 \\ 85 \\ 120 \end{gathered}$	$\begin{aligned} & 167 \\ & 208 \\ & 285 \end{aligned}$			
TC-TEL GR14q-1			A	B	C	D
	GR14q-1	$\begin{aligned} & 14 \\ & 17 \end{aligned}$	$\begin{gathered} 99.7 \\ 121.7 \end{gathered}$	$\begin{aligned} & 120 \\ & 142 \end{aligned}$	$\begin{aligned} & 126.6 \\ & 148.6 \end{aligned}$	$\begin{aligned} & 41^{*} \\ & 41^{*} \end{aligned}$
TC-DD			A	B		
	GR8	$\begin{aligned} & 16 \\ & 28 \end{aligned}$	$\begin{aligned} & 138 \\ & 205 \\ & \hline \end{aligned}$	$\begin{aligned} & 141 \\ & 207 \\ & \hline \end{aligned}$		
	GR10q	$\begin{aligned} & 10 \\ & 16 \\ & 21 \\ & 28 \\ & 38 \\ & \hline \end{aligned}$	92 138 138 205 205	95 141 141 207 207		
	GRY10q-3	55	205	205*		
	GRZ10d	18	137	141*		
	GRZ10t	30	202	206*		
$\left(\begin{array}{c} 2 \mathrm{GG10} \\ \vdots \\ \vdots \end{array}\right)$	2G10	$\begin{aligned} & 18 \\ & 24 \\ & 36 \end{aligned}$	$\begin{aligned} & 122 \\ & 165 \\ & 217 \end{aligned}$			
	2G11	$\begin{aligned} & 18 \\ & 24 \\ & 34 \\ & 36 \\ & 40 \\ & 55 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 225 \\ & 320 \\ & 533^{*} \\ & 415 \\ & 535 \\ & 535 \\ & 565 \\ & \hline \end{aligned}$			

[^24]
Lamp Table - Fluorescent Lamps

Lamp Table - Fluorescent Lamps

Lamp type/lamp base	Base	Output (W)	$\boldsymbol{\varnothing}$ D (mm)	A (mm)
	2GX13	$\begin{aligned} & 22 \\ & 40 \\ & 55 \\ & 60 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 230.0 \\ & 305.0 \\ & 305.0 \\ & 379.0 \end{aligned}$
	G10q	$\begin{aligned} & 22 \\ & 32 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 29 \\ & 29 \\ & 29 \\ & 30 \end{aligned}$	$\begin{aligned} & \hline 215.9 \\ & 304.8 \\ & 406.4 \\ & 408.8^{*} \end{aligned}$
	2G13-92	$\begin{aligned} & 18 \\ & 36 \\ & 58 \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \\ & 26 \end{aligned}$	$\begin{aligned} & \hline 304^{*} \\ & 566,601^{*} \\ & 566,759^{*} \end{aligned}$
				* Not yet included in IEC standard (non-committal specifications)

Tube lengths of plastic and glass protective tube

$\varnothing D(\mathrm{~mm})$	Length $\mathrm{L}(\mathrm{mm})$
$38^{ \pm 0.5}$	$\mathrm{~L}=\mathrm{A}-2 \mathrm{O}^{ \pm 1}$
$50^{ \pm 0.8}$	$\mathrm{~L}=\mathrm{A}-3 \mathrm{O}^{ \pm 1}$

Key to lamp designations

TC-S	Tube Compact-Single
TC-SEL	Tube Compact-Single Electronic
TC-D	Tube Compact-Double
TC-DEL	Tube Compact-Double Electronic
TC-T	Tube Compact-Triple
TC-TEL	Tube Compact-Triple Electronic
TC-Q	Tube Compact-Quad
TC-QEL	Tube Compact-Quad Electronic
TC-DD	Tube Compact-Double D-Shape
TC-L	Tube Compact-Long
TC-F	Tube Compact-Flat
T2 (T7)	Tube $\varnothing 2 / 8^{\prime \prime}(7 \mathrm{~mm})$
T5 (T16)	Tube $\varnothing 5 / 8 "(16 \mathrm{~mm})$
T8 (T26)	Tube $\varnothing 8 / 8 "(26 \mathrm{~mm})$
T12 (T38)	Tube $\varnothing 12 / 8 "(38 \mathrm{~mm})$
T-U	Tube, U U-Shape
T-R	Tube, Ring-Shape
T-R5 (T-R16)	Tube, Ring-Shape $\varnothing 5 / 8 "(16 \mathrm{~mm})$

Energy efficiency classification

Based on Directive 2009/125/EC, the European Commission has revised and redefined the limit values from Regulations (EC) 244/2009, (EC) 245/2009 and (EU) 1194/2012 in the third stage with Regulation (EU) 2019/2020 laying down ecodesign requirements for light sources and separate control gear. This regulation will enter into force on 1 September 2021. In the process, the scope was extended to LED light sources and separate control gear of any kind. In addition, limit values for losses in the so-called standby mode, no-load mode and the standby mode in network operation were added. The energy classes for separate control gears are no longer applicable and the limit values of the former class A2 apply. This means that within the EU, only control gears of energy class A 2 and better are permitted.

Furthermore, regulation (EU) 2019/2020 sets higher efficiency requirements for the most common T8 lamps from 1 September 2023, which de facto prohibits the placing of T8 lamps on the EU market.

The following table summarises the minimum energy efficiencies based on the energy classifications of ballasts valid until 1.9.2021. From 1.9.2021, classes A3 to B2 will be banned in the EU and the only minimum energy efficiency requirement will be the values of class A2, which are highlighted in the following table.

Lamp data					Ballast efficiency (Pıs/PInput) (non-dimmable ballasts)				
Type	Nominal output W	ILCOS-Code	Typical rating						
			$\begin{aligned} & 50 \mathrm{~Hz} \\ & \mathrm{~W} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{HF} \\ & \mathrm{~W} \end{aligned}\right.$	$\begin{aligned} & \text { A2 BAT } \\ & \% \end{aligned}$	$\begin{aligned} & \text { A2 } \\ & \% \end{aligned}$	$\begin{aligned} & \text { A3 } \\ & \% \end{aligned}$	B1 $\%$	$\begin{aligned} & \text { B2 } \\ & \% \end{aligned}$
T8	15	FD-1 5-E-G1 3-26/450	15	13.5	87.8	84.4	75.0	67.9	62.0
	18	FD-1 8-E-G1 3-26/600	18	16	87.7	84.2	76.2	71.3	65.8
	30	FD-30-E-G 1 3-26/900	30	24	82.1	77.4	72.7	79.2	75.0
	36	FD-36-E-G13-26/1200	36	32	91.4	88.9	84.2	83.4	79.5
	38	FD-38-E-G13-26/1050	38.5	32	87.7	84.2	80.0	84.1	80.4
	58	FD-58-E-G13-26/1500	58	50	93.0	90.9	84.7	86.1	82.2
	70	FD-70-E-G13-26/1800	69.5	60	90.9	88.2	83.3	86.3	83.1
$\overline{\text { TC-L }}$	18	FSD-1 8-E-2G11	18	16	87.7	84.2	76.2	71.3	65.8
	24	FSD-24-E-2G11	24	22	90.7	88.0	81.5	76.0	71.3
	36	FSD-36-E-2G11	36	32	91.4	88.9	84.2	83.4	79.5
$\overline{\text { TC-F }}$	18	FSS-18-E-2G10	18	16	87.7	84.2	76.2	71.3	65.8
	24	FSS-24-E-2G10	24	22	90.7	88.0	81.5	76.0	71.3
	36	FSS-36-E-2G10	36	32	91.4	88.9	84.2	83.4	79.5
$\begin{aligned} & \hline \text { TC-D/ } \\ & \text { TC-DE } \end{aligned}$	10	$\begin{aligned} & \text { FSQ-10-E-G24q=1 } \\ & \text { FSQ-10-1-G24d=1 } \end{aligned}$	10	9.5	89.4	86.4	73.1	67.9	59.4
	13	$\begin{aligned} & \text { FSQ-13-E-G24q=1 } \\ & \text { FSQ-13--G24d=1 } \end{aligned}$	13	12.5	91.7	89.3	78.1	72.6	65.0
	18	$\begin{aligned} & \text { FSQ-18-E-G24q=2 } \\ & F S Q-18-1-G 24 d=2 \end{aligned}$	18	16.5	89.8	86.8	78.6	71.3	65.8
	26	$\begin{aligned} & \text { FSQ-26-E-G24q=3 } \\ & \text { FSQ-26-IG24d=3 } \end{aligned}$	26	24	91.4	88.9	82.8	77.2	72.6
$\begin{aligned} & \hline \mathrm{TC-T/} \\ & \mathrm{TC}-\mathrm{TE} \end{aligned}$	13	$\begin{aligned} & \text { FSM-13-E-GX24q=1 } \\ & \text { FSM-13--GX24d=1 } \end{aligned}$	13	12.5	91.7	89.3	78.1	72.6	65.0
	18	FSM-1 8-E-GX24q=2 FSM-18-IGX24d=2	18	16.5	89.8	86.8	78.6	71.3	65.8
	26	$\begin{aligned} & \text { FSM-26-E-GX24q=3 } \\ & \text { FSM-26--GX24d=3 } \end{aligned}$	26.5	24	91.4	88.9	82.8	77.5	73.0
$\begin{aligned} & \hline \text { TC-DD/ } \\ & \text { TC-DDE } \end{aligned}$	10	$\begin{aligned} & \text { FSS-1 O-E-GR10q } \\ & \text { FSS-1 O-L/P/H-GR10q } \end{aligned}$	10.5	9.5	86.4	82.6	70.4	68.8	60.5
	16	FSS-16-E-GR10q FSS-16-HR10q FSS-10-L/P/H-GR10q	16	15	87.0	83.3	75.0	72.4	66.1
	21	FSS-2 1-E-GR10q FSS-21-IGR10q FSS-21-L/P/H-GR10q	21	19	89.4	86.4	79.2	73.9	68.8
	28	$\begin{aligned} & \text { FSS-28-E-GR10q } \\ & \text { FSS-28--GR10q } \\ & \text { FSS-28-L/P/L-GR10q } \end{aligned}$	28	26	89.7	86.7	81.3	78.2	73.9
	38	$\begin{aligned} & \text { FSS-38-E-GR10q } \\ & \text { FSS-38-L/P/L-GR10q } \end{aligned}$	38.5	36	92.3	90.0	85.7	84.1	80.4

Lamp types

T8

TC-L

TC-F

TC-T/TC-TE

TC-DD/TC-DDE

Technical Details - Components for Fluorescent Lamps

Lamp data					Ballast efficiency (PIS/PInput) (non-dimmable ballasts)				
Type	Nominal output W	ILCOS-Code	Typical rating						
			$\begin{aligned} & 50 \mathrm{~Hz} \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \mathrm{HF} \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { A2 BAT } \\ & \% \end{aligned}$	$\begin{aligned} & \text { A2 } \\ & \% \end{aligned}$	$\begin{aligned} & \text { A3 } \\ & \% \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \% \end{aligned}$	$\begin{aligned} & \mathrm{B} 2 \\ & \% \end{aligned}$
$\overline{\text { TC }}$	5	FSD-5--G23 FSD-5-E-2G7	5.4	5	72.7	66.7	58.8	49.3	41.4
	7	FSD-7--G23 FSD-7-E-2G7	7.1	6.5	77.6	72.2	65.0	55.7	47.8
	9	FSD-9--G23 FSD-9-E-2G7	8.7	8	78.0	72.7	66.7	60.3	52.6
	11	FSD-1 1-HG23 FSD-1 1-E-2G7	11.8	11	83.0	78.6	73.3	66.7	59.6
T5	4	FD-4-E-G5-16/150	4.5	3.6	64.9	58.1	50.0	45.0	37.2
	6	FD-6-E-G5-16/225	6	5.4	71.3	65.1	58.1	51.8	43.8
	8	FD-8-E-G5-16/300	7.1	7.5	69.9	63.6	58.6	48.9	42.7
	13	FD-1 3-E-G5-16/525	13	12.8	84.2	80.0	75.3	72.6	65.0
T9-C	22	FSC-22-E-G10q-29/200	22	19	89.4	86.4	79.2	74.6	69.7
	32	FSC-32-E-G10q-29/300	32	30	88.9	85.7	81.1	80.0	76.0
	40	FSC-40-E-G10q-29/400	40	32	89.5	86.5	82.1	82.6	79.2
T2	6	FDH-6-L/P-W4.3x8.5d-7/220		5	72.7	66.7	58.8	-	-
	8	FDH-8-L/P-W4.3×8.5d-7/320		7.8	76.5	70.9	65.0	-	-
	11	FDH-1 1-L/P-W4.3x8.5d-7/420		10.8	81.8	77.1	72.0	-	-
	13	FDH-13-L/P-W4.3x8.5d-7/520		13.3	84.7	80.6	76.0	-	-
	21	FDH-2 1-L/P-W4.3x8.5d-7		21	88.9	85.7	79.2	-	-
	23	FDH-23-L/P-W4.3x8.5d-7		23	89.8	86.8	80.7	-	-
$\overline{\text { T5-E }}$	14	FDH-14-L/P-G5-16/550		13.7	84.7	80.6	72.1	-	-
	21	FDH-2 1-L/P-G5-16/850		20.7	89.3	86.3	79.6	-	-
	24	FDH-24-L/P-G5-16/550		22.5	89.6	86.5	80.4	-	-
	28	FDH-28-L/P-G5-16/1150		27.8	89.8	86.9	81.8	-	-
	35	FDH-35-L/P-G5-16/1450		34.7	91.5	89.0	82.6	-	-
	39	FDH-39-L/P-G5-16/850		38	91.0	88.4	82.6	-	-
	49	FDH-49-L/P-G5-16/1450		49.3	91.6	89.2	84.6	-	-
	54	FDH-54-L/P-G5-16/1150		53.8	92.0	89.7	85.4	-	-
	80	FDH-80-L/P-G5-16/1150		80	93.0	90.9	87.0	-	-
	95	FDH-95-L/P-G5-16/1150		95	92.7	90.5	84.1	-	-
	120	FDH-120-L/P-G5-16/1450		120	92.5	90.2	84.5	-	-
T5-C	22	FSCH-22-L/P-2GX13-16/225		22.3	88.1	84.8	78.8	-	-
	40	FSCH-40-L/P-2GX13-16/300		39.9	91.4	88.9	83.3	-	-
	55	FSCH-55-L/P-2GX13-16/300		55	92.4	90.2	84.6	-	-
	60	FSCH-60-L/P-2GX13-16/375		60	93.0	90.9	85.7	-	-
TC-LE	40	FSDH-40-L/P-2G11		40	91.4	88.9	83.3	-	-
	55	FSDH-55-L/P-2G11		55	92.4	90.2	84.6	-	-
	80	FSDH-80-L/P-2G 11		80	93.0	90.9	87.0	-	-
$\overline{T C-T E ~}$	32	FSMH-32-L/P-GX24q=3		32	91.4	88.9	82.1	-	-
	42	FSMH-42-L/P-GX24q=4		43	93.5	91.5	86.0	-	-
	57	$\begin{aligned} & \text { FSM6H-57-L/P-GX24q=5 } \\ & \text { FSM8H-57-L/P-GX24q=5 } \end{aligned}$		56	91.4	88.9	83.6	-	-
	70	$\begin{aligned} & \text { FSM6H-70-L/P-GX24q=6 } \\ & \text { FSM8H-7O-L/P-GX24q=6 } \end{aligned}$		70	93.0	90.9	85.4	-	-
	60	FSM6H-60-L/P-2G8=1		63	92.3	90.0	84.0	-	-
	62	FSM8H-62-L/P-2G8=2		62	92.2	89.9	83.8	-	-
	82	FSM8H-82-L/P-2G8=2		82	92.4	90.1	83.7	-	-
	85	FSM6H-85-L/P-2G8=1		87	92.8	90.6	84.5	-	-
	120	FSM6H-1 20-L/P-2G8=1 FSM8H-120-L/P-2G8=1		122	92.6	90.4	84.7	-	-
TC-DD	55	FSSH-55-L/P-GR10q		55	92.4	90.2	84.6	-	-

With the Ecodesign Regulation (EU) 2019/2020, the minimum energy efficiency values of the 3rd stage from 2017 corresponding to class A2 are prescribed, which are calculated as follows:

[^25]Lamp types
\square 包

TC
$\square \square \square$
T5

T9-C
$\square \square \square^{\square}$
T2
$\square \square$
T5-E

T5-C

TC-TE

TC-DD

SYSTEMOPTIMISING COMPENSATION

PARALLEL CAPACITORS

Capacitors are designed to compensate inductive reactive current of discharge lamps in $50 / 60 \mathrm{~Hz}$ networks when operated with electromagnetic ballasts. As required by utility companies, capacitors serve to compensate the reactive current generated by the respective ballast. A power factor of $\lambda \geq 0.9$ is achieved.

In addition, capacitors can also be used to compensate or generate phase displacements. Careful selection of the raw materials as well as special thermal treatment of the capacitor coil guarantee a long servicelife and stable capacitance.
Parallel capacitors 146-147
Technical details for parallel capacitors 148-155
General technical details 228-236Glossary237-239

Parallel Connected Capacitors with Leads 250 V, 50/60 Hz

Capacitors type A

Casing: plastics, white
Fastening: male nipple M8x10
with nut and washer included
Discharge resistance
Leads: HO5V2U 0,5 mm², length: 250 mm

Ref. No.	Capacity $\mu F(\pm 10 \%)$	Temperature range ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \varnothing(\mathrm{D}) \\ & \mathrm{mm} \end{aligned}$	Length (L) mm	Male nipple/ length (mm)	Weight g	Packaging unit pcs.
571653	2.5	-25 to 85	30	55	M8x 10	26	350
526169	4.0	-25 to 85	30	55	M8x 10	27	350
571654	4.5	-25 to 85	30	55	M8x 10	27	350
526170	6.0	-25 to 85	30	55	M8x 10	28	350
526171	8.0	-25 to 85	30	55	M8x 10	35	350
571655	9.0	-25 to 85	33	63	M8x 10	40	250
529665	10.0	-25 to 85	33	63	M8x 10	42	250
526172	12.0	-25 to 85	33	63	M8x 10	45	250
543402	13.5	-25 to 85	33	63	M8x 10	47	250
529666	16.0	-25 to 85	40	63	M8x 10	61	200
551644	18.0	-25 to 85	40	63	M8x 10	65	200
528552	20.0	-25 to 85	40	63	M8x 10	69	200
508484	25.0	-25 to 85	40	63	M8x 10	71	200
536743	30.0	-25 to 85	45	88	M8x 10	95	120
528554	35.0	-25 to 85	45	88	M8x10	105	120
571656	40.0	-25 to 85	45	88	M8x 10	113	120
528555	45.0	-25 to 85	45	88	M8x 10	123	120
571657	50.0	-25 to 85	45	88	M8x 10	127	120
571658	55.0	-25 to 85	50	94	M8x 10	147	100
571659	60.0	-25 to 85	50	94	M8x10	157	80
571660	65.0	-25 to 85	50	94	M8x 10	167	80

Parallel Connected

Capacitors with

Break-action

Mechanism

Capacitors type B

Casing: aluminium
Filling material: based on vegetable oil
Fastening: male nipple
with nut and washer included
Discharge resistance
Overpressure protection
On request further capacities or connectors

B Double spade connector 6.3×0.8 acc. to IEC 61210

Ref. No.	Capacity $\mu \mathrm{F}(\pm 10 \%)$	Temperature range ${ }^{\circ} \mathrm{C}$	Drawing	$\begin{aligned} & \varnothing(D) \\ & \mathrm{mm} \end{aligned}$	$\begin{aligned} & \text { Length (L) } \\ & \mathrm{mm} \end{aligned}$	Male nipple/ length (mm)	Weight g	Packaging unit pcs.
250 V, 50/60 Hz								
536379	4.0	-40 to 100	A	30	60	M8×10	35	144
536380	6.0	-40 to 100	A	30	60	M8×10	40	144
536381	8.0	-40 to 100	A	35	72	M8x10	42	144
536382	10.0	-40 to 100	A	35	72	M8×10	46	144
536383	12.0	-40 to 100	A	35	72	M8×10	49	144
536386	18.0	-40 to 100	A	40	72	M8×10	76	105
536387	20.0	-40 to 100	A	40	72	M8×10	80	105
536388	25.0	-40 to 100	A	40	72	M8×10	82	105
536389	30.0	-40 to 100	A	40	97	M8x10	101	96
536390	32.0	-40 to 100	A	40	97	M8×10	105	96
536392	40.0	-40 to 100	A	45	97	M8x10	132	70
536393	45.0	-40 to 100	A	45	97	M8×10	142	70
536394	50.0	-40 to 100	A	45	97	M8×10	150	70
536396	60.0	-40 to 100	A	45	121	M8x10	175	35
537058	65.0	-40 to 100	B	60	105	M12x12	201	36
506360	85.0	-40 to 100	B	60	130	M12x12	248	36
506363	100.0	-40 to 100	B	60	130	M12×12	286	36

Ref. No.	Capacity $\mu \mathrm{F}(\pm 10 \%)$	Temperature range ${ }^{\circ} \mathrm{C}$	Drawing	$\varnothing(\mathrm{D})$ mm	Length (L) mm	Male nipple/ length (mm)	Wackaging unit pcs.

536400	32.0	-40 to 85	A	45	97	M8x10	179	70
536401	37.0	-40 to 85	A	45	97	M8×10	200	70
536402	50.0	-40 to 85	B	45	121	M8x10	360	35
536404	60.0	-40 to 85	B	60	130	M12x12	270	36
536405	85.0	-40 to 85	B	60	130	M12x12	420	36

Idle current compensation 149
Parallel compensation 150
MPP capacitor technology 150-152
Assembly instructions - Capacitors 152-154
Capacitor tables 154-155
General technical details 228-236
Glossary 237-239

Compensation of idle current

When using magnetic ballasts a phase shift occurs between the mains voltage and the current drawn. This phase shift is expressed by the power factor λ, which generally ranges between a value of 0.3 and 0.7 with inductive circuits.

As a result of this phase shift, idle current, which does not boost the efficiency of the lighting unit, is also taken up from the power supply network in addition to real power. Power utility companies therefore require an increase of the power factor to values of over 0.85 for systems exceeding a certain rating (usually upwards of 250 W per external conductor).

Compensation capacitors are used to counteract idle current (by increasing the power factor) and can be connected either in parallel or in series.

Thanks to a power factor of approx. 0.95, electronic ballasts do not need to be operated with compensation capacitors.

Compensation using series capacitors

Series compensation employs a so-called dual circuit (two fluorescent lamp circuits connected in parallel), whereby the capacitor, which is connected in a branch of the circuit, over compensates the inductive idle current to such an extent that it covers the idle current of both ballasts. This type of circuit is only used with fluorescent lamps. As series capacitors are dimensioned for nominal-voltage and ballast tolerances, the lamp in the capacitor branch of the dual circuit operates with a higher current and thus also with a higher rating. Apart from differences in lamp brightness, the power loss in the circuit branch with the capacitor will also be greater.

An advantage of the dual circuit is that it prevents the radiated light from flickering.
The higher current in the so-called capacitive lamp circuit causes an up to 14% increase in lamp rating and a reduction of the lamp service life by as much as 20%. This goes hand in hand with substantial technical, ecological and economic disadvantages.

Series capacitors have to meet very high technical requirements to suit various aspects like temperature, nominal voltage, tolerances of the capacitance values, etc.

As defined by EC directive 2000/55/EC (European Standard EN 50294 governing the measurement of total power consumption), a series capacitor is considered to be a part of the ballast. If the system rating of the capacitive circuit containing the lamps and ballasts is then determined in line with the above definition, rating increases of up to 14% will become apparent in comparison to operation without a series capacitor. Experience has shown that this increased power consumption often means devices fall in the directive's "banned" category. It is therefore strongly advised that due consideration be given to the elevated power consumption values common to using series capacitors for compensation purposes.

Technical Details - Capacitors for Fluorescent and Discharge Lamps

Parallel compensation

During parallel compensation, each lamp circuit is assigned to a capacitor connected in parallel to the mains. Only one capacitor providing sufficient capacitance is needed for luminaires with several lamps. Parallel compensation does not affect current flow through a discharge lamp. The requirements placed on parallel capacitors are clearly lower than those for series capacitors.

However, parallel compensation can be subject to limitations when using audio-frequency ripple control pulses if the system operates with a connected rating of over 5 kVA and ripple control frequencies of over 300 Hz are used. The respective power utility company should be consulted for advice in such cases.

Parallel compensation is used in fluorescent lamp and high-pressure discharge lamp circuits.
As parallel compensation offers substantial advantages, this has become the accepted method in the last few years.

Metallised polypropylene film capacitors

Metallised polypropylene film capacitors are designed to compensate the inductive idle current drawn by discharge lamps (fluorescent lamps, high-pressure mercury vapour lamps, high-pressure sodium vapour lamps and metal halide lamps with a ceramic discharge tube) in $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ grids. All Vossloh-Schwabe compensation capacitors for luminaires feature a metallised polypropylene film dielectric. Compensation capacitors help to increase the power factor to values of over $\lambda 0.85$ as required by power utility companies.

Construction of metallised polypropylene film capacitors

VS MPP capacitors contain a low-loss metallised polypropylene film dielectric, which is produced by depositing a thin layer of zinc and aluminium or pure aluminium vapour onto one side of the polypropylene film. The contacts at either end of the capacitor coil are created by spraying on a layer of metal and thus guarantee a high current-carrying capacity as well as a low-inductive connection between the terminals and the coils.

All capacitors with a nominal voltage upwards of 280 V are filled with oil or resin after the coils have been inserted and then hermetically sealed. This protects the coils from environmental influences and reduces partial discharge, which contributes to a long service life and stable capacitance. The effects of partial discharge only play a minor role for capacitors with a nominal voltage of under 280 V so that these devices do not need to be filled.

Hermetically sealed, filled capacitors with an overpressure contact breaker should always be used in critical ambient conditions (high humidity, aggressive atmospheres, high temperatures), if the workload and power supply conditions are unknown as well as in situations that demand increased attention to safety.

VS MPP capacitors feature a self-healing dielectric. In the event of a dielectric breakdown in the coil (short circuit), the metal coating vaporises around the breakdown site owing to the high temperature of the transient arc that is produced. Owing to the excess pressure generated during such a breakdown, the metal vapour is pushed outwards away from the centre of the site within the space of just a few microseconds. This creates a coating-free corona around the breakdown site that completely isolates it and means the capacitor remains fully functional during a dielectric breakdown.

The self-healing properties of a capacitor can decrease with time and with constant overloading. This bears the risk of a non-healing breakdown with a permanent short circuit. Therefore self-healing must not be confused with failsafe.

Compensation capacitors are divided into two type families (A and B) in accordance with IEC 61048 A2.

- Type A capacitors defined:
"Self-healing parallel capacitors; without an (overpressure) contact breaker in the event of failure". They are referred to as unsecured capacitors.
- Type B capacitors defined:
"Self-healing capacitors for series connection in lighting circuits or self-healing parallel capacitors; with an (overpressure) contact breaker in the event of failure".
These are referred to as hermetically sealed, secured capacitors.
In accordance with the standard, the discharge resistor of both capacitor families must be capable of reducing capacitor voltage to a value of under 50 V in the space of 60 seconds after disconnection from the mains.

Capacitors without a contact breaker, unsecured, Type A capacitors in accordance with IEC 61048 A2

IEC 61048 A2-compliant Type A capacitors are self-healing and require no short-circuit protection for normal operation.

Type A capacitors are not fitted with a specific failsafe mechanism as prescribed by the standards for Type B capacitors. Nevertheless, the requirements laid down in the standard for Type A capacitors, especially with regard to temperature and service life tests, are designed to ensure a sufficient degree of device safety and availability provided the device was correctly installed and operated under calculable and known ambient operating conditions.

Even so, in very rare cases these capacitors can still develop erratic behaviour due to overloading or at the end of the device's service life.

For that reason, Type A capacitors should only be integrated into luminaires for operation in ambient conditions that are uncritical with regard to flammable materials. Luminaires should feature protection against secondary damage inside and outside the luminaire in the event of a defect.

Capacitors with a contact breaker,

secured Type B capacitors in accordance with IEC 61048 A2

Self-healing capacitors do not require short-circuit protection for normal operation as they automatically regenerate after a dielectric breakdown. However, as a result of frequent self-healing caused by overloading (voltage, current, temperature) or towards the end of the capacitor's service life, overpressure can build up inside the capacitor (due to the decomposition products of the vaporised polypropylene).

In order to prevent the capacitor casing from exploding in such cases, hermetically sealed capacitors in accordance with IEC 61048 A2 (Type B capacitors) are fitted with an overpressure contact breaker. If excess pressure builds up within these capacitors, e.g. due to undue thermal loading or excessive voltages or at the end of the capacitor's service life, a concertina section opens out that causes the casing to expand lengthways. As a result, the wire contacts rupture at a predetermined breaking point, which irreversibly interrupts the current (contact breaker).

This type of overpressure-protected capacitor with a contact breaker is also referred to as a flame- and explosion-proof capacitor with a break-action mechanism.

Type B capacitors with a contact breaker are available in an aluminium casing

Assembly Instructions for Capacitors

For mounting and installing compensation capacitors

Mandatory regulations

DIN VDE 0100 Erection of low voltage installations

EN 60598 Luminaires - part 1: General requirements and tests

EN 55015 Maximum values and testing methods for radio disturbance of electrical lighting facilities and similar electrical equipment

EN 61000-3-2 Electromagnetic Compatibility (EMC) - part 3:
maximum values - main section part 2: maximum values for mains harmonics (ballast input current up to and including 16 A per conductor)

EN 61048 Operating devices for lamps - capacitors for fluorescent lamp circuits and other discharge lamp circuits; general and safety requirements

EN 61049 Operating devices for lamps - capacitors for fluorescent lamp circuits and other discharge lamp circuits; performance requirements

Mechanical mounting

Fastening	Base screw (permissible torque):
	- $M 8 \times 10-5 \mathrm{Nm}$ (aluminium casing)
	- $\mathrm{M} 8 \times 10-2.2 \mathrm{Nm}$ (plastic casing)

Mounting location

Any
Capacitors fitted with overpressure protection require clearance of at least 10 mm above the contacts so ensure the casing can expand unhindered if the contact breaker is triggered.

Heat transfer	Capacitors should be mounted with the greatest possible clearance to heat sources or lamps. During operation, the temperature measured at the tc point must not exceed the specified maximum value.
tc point	The t_{c} point is defined as an arbitrary point on the surface of the capacitor, which is not specifically marked.
UV Radiation	Capacitors should not be installed in an unprotected manner directly next to any sources of light, heat radiation or convection (ballasts, lamps, heating elements, etc.) as both high temperatures and constant exposure to $U V$ radiation can lead to premature ageing. In combination with high temperatures, UV radiation or other substances and influencing factors, chemicals such as ozone and chlorine can lead to accelerated ageing and material embrittlement.
Thermal load	All capacitor casings are made of flame-retardant materials. However, the potting material, oils and the winding material are flammable and consideration must be taken of this fact during installation. The thermal load of an MKP capacitor is approx. $40 \mathrm{MJ} / \mathrm{kg}$.

Type A capacitors
are not fitted with any special protective functions in case of defect.
Temperature-protected capacitors are a further development of Type A capacitors and feature a thermal fuse that is triggered by excess temperatures and disconnects the capacitor from the mains.

Type B capacitors
are fitted with an overpressure contact breaker in case of defects at the end of the capacitor's service life.

Connection Parallel capacitors for fluorescent lamps:

- Casing diameter $25-30 \mathrm{~mm}$: push-in terminals for $0.5-1 \mathrm{~mm}^{2}$ conductors
- Casing diameter $>30 \mathrm{~mm}$: push-in terminals for $0.5-1 \mathrm{~mm}^{2}$ conductors

Parallel capacitors for high-pressure lamps:

- Casing diameter $25-30 \mathrm{~mm}$: push-in terminals for $0.5-1 \mathrm{~mm}^{2}$ conductors
- Casing diameter $>30 \mathrm{~mm}$: push-in terminals for $0.5-1 \mathrm{~mm}^{2}$ conductors

Reliability and service life

Provided the max. specified voltage and current loads, temperature, humidity and mains harmonics values are observed,

- approx. 50,000 hours for overpressure-protected parallel capacitors
- approx. 30,000 hours for parallel capacitors without overpressure protection in a plastic or aluminium casing
A 3-10\% decrease in capacitance must be expected in the course of the capacitor's service life. Failure rate: 1% per 1,000 operating hours when maximum voltage, current and temperature values are not exceeded.

Technical Details - Capacitors for Fluorescent and Discharge Lamps

Electrical installation

Nominal voltage 250 V, $50 / 60 \mathrm{~Hz} ; 450 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
(dependent on type)

Capacitance tolerance
$\pm 10 \%(\pm 5 \%$ dependent on type)

Temperature range
$-25 /-40^{\circ} \mathrm{C}$ to $+85 /+100^{\circ} \mathrm{C}$ (dependent on type, details see product page)
Optional thermal fuse

Relative humidity Class F for Type B capacitors: 75% annual mean, 95% peak value on 30 days Class G for Type A capacitors: 65% annual mean, 85% peak value on 30 days

Condensation Impermissible

Capacitors for fluorescent lamp circuits

Lamp		Parallel compensation capacitor ($\mu \mathrm{F} \pm 10 \%$ at 250 V$)$	
Output W	Type	$\begin{aligned} & 220-240 \mathrm{~V} / 50 \mathrm{~Hz} \\ & \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 220-230 \mathrm{~V} / 60 \mathrm{~Hz} \\ & \mathrm{pF} \\ & \hline \end{aligned}$
4	T	2**	2**
6	T	2**	2**
8	T	2**	2**
10	T	2	2
13	T	2	2
14	T	4.5	4.5
15	T	3.5 or 4*	3 or 4*
16	T	2	2
18	T	4.5 or 4*	4**
20	T	4.5 or 4*	4**
23	T	3.5	3
25	T	3.5	3
30	T	4.5	4
36	T	4.5	4
$36-1 \mathrm{~m}$	T	6.5	-
38	T	4.5	4
40	T	4.5	4
42	T	6.5	-
58	T	7	6
65	T	7	6
70	T	6	-
75	T	6	-
80	T	9	8
85	T	8	6.5
100	T	10	9
115	T	18	16
140	T	14	14
160	T	14	14
16	T-U	2	2
18/20	T-U	4.5 or 4*	4**
36/40	T-U	4.5	4
58/65	T-U	7	6
22	T-R	5	4.5
32	T-R	5	4.5
40	T-R	4.5	4

Lamp Output W Type		$220-240 \mathrm{~V} / 50 \mathrm{~Hz}$ $\mu \mathrm{~F}$	$220-230 \mathrm{~V} / 60 \mathrm{~Hz}$ $\mu \mathrm{~F}$
$5 / 7 / 9 / 11$	TC-S	$2^{* *}$	$2^{* *}$
10	TC-D/TC-T	2	2
13	TC-D/TC-T	2	2
18	TC-D/TC-T	2	2
26	TC-D/TC-T	3.5	3
10	TC-DD	2	2
16	TC-DD	2	2
21	TC-DD	3	3
28	TC-DD	3.5	3
38	TC-DD	4.5	4
18	TC-L/TC-F	4.5 or 4^{*}	$4^{* *}$
24	TC-L/TC-F	4.5	4
34	TC-L/TC-F	4.5	4
36	TC-L/TC-F	4.5	4

*) Two lamps connected to a ballast in series

* *) Applies to one lamp connected to a ballast or two lamps connected in series

Capacitors for discharge lamp circuits

Lamp Output W		Type	$220 / 230 / 240 / 252 \mathrm{~V}$ $50 \mathrm{~Hz}(\mu \mathrm{~F})$	220 V	$380 / 400 / 420 \mathrm{~V}$,

high-pressure mercury vapour lamp circuits

50	HM	7	6		
80	HM	8	7		
125	HM	10	10		
250	HM	18	15		
400	HM	25	25		
700	HM	40	35		
1000	HM	60	50		

high-pressure sodium vapour lamp circuits

HS							HS	6	5		
50	HS	8	8								
70	HS	12	10								
100	HS	12	10								
150	HS	20	16								
250	HS	32	25								
400	HS	45	40		20						
600	HS	65	55	25	25						
750	HS	70	60	25							
1000	HS	100	85								

metal halide lamp circuits

35	HI	6	5		
70	HI	12	10		
100	HI	12	10		
150	HI	20	16		
250	HI	32	25		
400	HI	$35 / 45$	$35 / 45$		
1000	HI	85	75		
2000	HI	125	125		37
2000	HI			37	60
2000	HI			60	60
2000	HI			60	100
2000	HI			100	

Electronic Converter for Low-voltage Halogen Incandescent Lamps

ELECTRONIC CONVERTERS

FOR LOW-VOLTAGE HALOGEN INCANDESCENT LAMPS

The operating voltage of low-voltage halogen lamps is normally 12 V 16 and 24 V are also used for special applications). As a result, transformers are required in order to connect such lamps to the normal mains supply within buildings, whereby international requirements governing building installations specify that safety transformers or converters (electronic transformers) be exclusively used for such purposes nowadays. These devices are designed in such a way as to prevent both personal injury and the outbreak of fire should the lighting system malfunction.

Electronic converters

The following chapter provides an overview of the VS range of electronic converters that feature a whole range of advantages: light and compact, superior efficiency (approx. 95\%), short-circuit protection, integrated overheating and overload protection, soft start for longer lamp life, broad part-load range and dimmability.

5
 Electronic Converters for Low-voltage Halogen Incandescent Lamps

Independent electronic converters

Technical details for incandescent lamps

206-215
General technical details
228-236
Glossary

Independent Electronic

Converters - LiteLine

Electronic safety converters
for low-voltage halogen incandescent lamps 12 V
Casing: heat-resistant polyamide

Mains frequency: $50-60 \mathrm{~Hz}$

A

B
 edge or phase-cutting trailing-edge dimmer

C

With integrated cord grip

Protection class II

SELV
Degree of protection: IP20
RFI-suppressed

Type	Ref. No.	Capacity range (W)	Voltage (V) prim. ($\pm 10 \%$)	sec.	Nominal current A	Ambient temperature ta $\left({ }^{\circ} \mathrm{C}\right.$)	Casing temperature tc $\left({ }^{\circ} \mathrm{C}\right)$	Drawing	Weight g
Dimensions: 22x36x103.5 mm									
EST 60/12.635	186173	10-60	220-240	10.2-12	0.258-0.260	-20 to 45	max. 85	A	70
Dimensions: 28x37x128 mm									
EST 70/12.380	186072	20-70	230-240	11.3-11.7	0.30-0.31	-20 to 45	max. 70	B	85
EST 105/12.381	186077	20-105	230-240	11.2-11.7	0.435-0.445	-20 to 40	max. 85	B	95
Dimensions: 33x37x185 mm									
EST 150/12.622	186098	50-150	230-240	11.2-11.6	0.595-0.605	-20 to 45	max. 85	C	175

Electronic Converter for Low-voltage Halogen Incandescent Lamps

LOW- AND MAINS VOLTAGE LAMPHOLDERS

LAMPHOLDERS FOR HALOGEN INCANDESCENT LAMPS

As the tungsten-halogen cycle and the high lamp current can cause very high temperatures when operating low-voltage halogen lamps, close attention must be paid to the luminaire's thermal conditions and components must be made of high-grade materials.

VS lampholders for low-voltage halogen lamps

The following chapter contains Vossloh-Schwabe's comprehensive range of connection elements, lampholders and accessories for safe and reliable installation in accordance with the latest regulations and developments.

VS lampholders for mains voltage halogen lamps

The following chapter contains Vossloh-Schwabe's comprehensive range of lampholders for single-ended halogen lamps (GU/GZ10 and G9 bases), lampholders for bayonet lamps (B22d bases) as well as lampholders for double-ended tubular lamps (R7s base).
Lampholders for low-voltage halogen incandescent lamps 162-167
G4, GZ4, G5.3, GX5.3, G6.35, GY6. 35 lampholders, accessories 162-163
lampholders with separate mounting spring for GU4 lamps 164
GX5.3 lamp connectors 65
GU5.3 lampholders 165
Lampholders with separate mounting spring for GU5.3 lamps 166
G53 lamp connectors 167
Lampholders for mains voltage halogen incandescent lamps 167-173
G9 lampholders, accessories 167-168
GUIO, GZ1O lampholders, accessories 169-170
R7s ceramic lampholders 170-172
R7s metal lampholders 172
Connectors 173
Technical details for incandescent lamps 206-2 15
General technical details 228-236
Glossary 237-239

G4, GZ4, G5.3, GX5.3, G6.35, GY6.35 Lampholders, Accessories

For low-voltage halogen incandescent lamps

The lampholders listed in this chapter permit the use of lamps with different bases. It is important to ensure that under no circumstances a lamp

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: LCP, black, T270
Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 2.4 g , unit: 1000 pcs.
Type: 33300

Ref. No.: 109547

Cover caps
For push-fit onto lampholders type 333
External thread 20.8×2
Material: LCP
Moulded thread: M10x1
Weight: 3.8 g , unit: 1000 pcs.
Type: 97255
Ref. No.: 109548

Screw rings
For components with external thread 20.8×2
Material: LCP
Weight: 1.4 g , unit: 1000 pcs.
Type: 97257
Ref. No.: 507490
with a smaller pin diameter is used
if a lamp with a larger pin diameter
has already been used.

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: LCP, black, T270
Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 2.6 g , unit: 1000 pcs.
Type: 33400
Ref. No.: 109674

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: ceramic, cover plate: mica
T350
Nominal rating: 10/24
Contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws M3
Weight: 6.8 g , unit: 500 pcs.
Type: 32400

Ref. No.: 100939

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: ceramic, cover plate: mica
T300
Nominal rating: 10/24
Multipoint contacts: CuNiZn
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws M3
Weight: 7.1 g , unit: 1000 pcs.
Type: 32700

Ref. No.: 101258

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: ceramic, cover plate: mica
T300, nominal rating: 10/24
Multipoint contacts: CuNiZn
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing plate: zinc-coated polished steel
Fixing holes for screws M3
Weight: 8.8 g , unit: 1000 pcs.
Type: 32720
Ref. No.: 101274

Lampholders with Separate Mounting Spring for GU4 Lamps

For low-voltage halogen incandescent lamps

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: LCP, black, T270
Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
For cover cap (see p. 162)
Weight: 2.4 g, unit: 1000 pcs.
Type: 33300
Ref. No.: 109547

GU4 mounting spring for lamp
Material: stainless steel
For push-fit onto lampholders type 333 and 32210
Weight: 0.8 g , unit: 1000 pcs .
Type: 94095
Ref. No.: 109553

G/GZ4-, G/GX5.3, G/GY6. 35 lampholder
Casing: ceramic, cover plate: mica
T350
Nominal rating: 10/24
Contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws M3
Weight: 6.8 g , unit: 500 pcs.
Type: 32400
Ref. No.: 100939

GX5.3 Lamp Connectors

For low-voltage halogen incandescent lamps

GX5.3 lamp connectors
Casing: ceramic, cover plate: mica
T300, nominal rating: 10/24
Multipoint contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Weight: 7.8/8.5 g, unit: 500 pcs.
Type: 32600 holes for screws M3
Ref. No.: 101162
Type: 32620 threaded bushes M3
Ref. No.: 101207

GU5.3 Lampholders

For low-voltage halogen incandescent lamps

GU5.3 lampholder
Casing: ceramic, cover plate: mica
T350, nominal rating: 10/24
Contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws ST2.9
Mounting spring for lamp: stainless steel
Weight: 9.1 g , unit: 1000 pcs.
Type: 32480

Ref. No.: 106457

GU5.3 lampholders
Casing: ceramic, cover plate: mica
T300, nominal rating: 10/24, multipoint contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Mounting spring for lamp: stainless steel
Weight: $11 / 12 \mathrm{~g}$, unit: 500 pcs.
Type: 32680 holes for screws M3
Ref. No.: 101248
Type: 32690 threaded bushes M3
Ref. No.: 101253

Lampholders with Separate Mounting Spring for GU5.3 Lamps

For low-voltage halogen incandescent lamps

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: LCP, black, T270
Nominal rating: 8/24 (for G4/GZ4 lamps: 4/24)
Multipoint contacts: CuNiZn
Push-in terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
For cover cap (see p. 162)
Weight: 2.4 g , unit: 1000 pcs.
Type: 33300
Ref. No.: 506199
GU5. 3 mounting spring for lamp
Material: stainless steel
For push-fit onto lampholders type 333
Weight: 1.1 g , unit: 1000 pcs.
Type: 94096
Ref. No.: 109554

G/GZ4, G/GX5.3, G/GY6. 35 lampholder
Casing: ceramic, cover plate: mica
T350
Nominal rating: 10/24
Contacts: Ni
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 140 mm
Fixing holes for screws M3
Weight: 6.8 g , unit: 500 pcs.
Type: 32400

Ref. No.: 100939

GU5.3 mounting spring for lamp
Material: stainless steel
The mounting spring has to be fastened
to the lampholder 100939.
The luminaire manufacturer is responsible
for the attachment.
Weight: 2 g, unit: 1000 pcs.
Type: 94060

Ref. No.: 106256

G53 Lamp Connectors

For low-voltage halogen incandescent lamps

G53 lamp connector
Casing: PPS, black
Nominal rating: 10/24
Contacts: CuNiZn
Lead: Cu tinned, stranded conductors $0.75 \mathrm{~mm}^{2}$,
Si-insulation, length: 140 mm

Fixing hole for screw M4
Lead exit: lateral
Weight: 4.4 g , unit: 1000 pcs.
Type: 33100

G9 Lampholders, Accessories

For mains voltage halogen incandescent lamps

For luminaires of protection class II

G9 lampholder

Casing: ceramic, cover plate: LCP, natural
T300, nominal rating: 2/250
Push-in twin terminals for stranded conductors with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Weight: 7.5 g , unit: 1000 pcs.
Type: 33800

Ref. No.: 568006

G9 lampholder

Casing: ceramic, T300, nominal rating: 2/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, double PTFE-insulation,
length: 180 mm
Weight: 12.8 g , unit: 1000 pcs.
Type: 33906
Ref. No.: 532610

Metal bracket with nipple
For G9 lampholders type 338/339
Material: zinc-coated steel
Female nipple: $\mathrm{M} 10 \times 1$
Weight: 7.8 g , unit: 1000 pcs.
Type: 94455
Ref. No.: 520880

Cover cap for G9 lampholders type 339
Material: LCP
External thread 20.8×2
Moulded thread: MiOx
Weight: 3.2 g , unit: 1000 pcs.
Type: 97760
Ref. No.: 525583

Screw rings
For components with external thread 20.8×2
Material: LCP
Weight: 1.4 g , unit: 1000 pcs.
Type: 97257
Ref. No.: 507490

G9 lampholder
Casing: ceramic, cover plate: LCP, natural T270, nominal rating: 2/250
Push-in twin terminals for stranded conductors with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 14.4 g, unit: 1000 pcs.
Type: 33500

Ref. No.: 502004

Cover caps for G9 lampholder 502004
Material: LCP
External thread 28x2 IEC 60399
Fixing holes for screws M3
Weight: $8.7 / 4.6 \mathrm{~g}$, unit: 1000 pcs.
Type: 83310 female nipple: $\mathrm{M} 10 \times 1$

Ref. No.: 505951

Type: 97268 moulded thread: M10x1

Ref. No.: 501942

Screw ring

For components with external thread 28×2
Material: LCP
$\varnothing 34 \mathrm{~mm}$, height: 7.5 mm
Weight: 1.9 g , unit: 1000 pcs.
Type: 05202
Ref. No.: 508458

GU10, GZ 10 Lampholders, Accessories

For mains voltage halogen incandescent lamps

GU1O, GZ10 lampholders
Casing: LCP, black, T270, nominal rating: 2/250
Push-in twin terminals for stranded conductors
with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 7 g , unit: 1000 pcs.
Type: 31000/31010
Ref. No.: 108979 GU1O, GZ1O lampholder
Ref. No.: 109007 GU1O lampholder

GU1O, GZ1O lampholders
For luminaires of protection class II
Casing: LCP, black, T270, nominal rating: 2/250
Push-in twin terminals for stranded conductors with ferrule on bare end of core $\varnothing 1.4-1.8 \mathrm{~mm}$
Fixing holes for screws M3
Weight: 8 g , unit: 1000 pcs .
Type: 31020/31030
Ref. No.: 502111 GU1O, GZ1O lampholder
Ref. No.: 502112 GU1O lampholder

Cover cap for GU10, GZ10 lampholders type 310
Material: PA GF, black
Moulded thread: M1Ox1
Fixing holes for screws M3
Weight: 3.4 g , unit: 1000 pcs.
Type: 97244
Ref. No.: 109411

Cover cap for lampholders 502111/502112
External thread 32×2
Material: LCP
Moulded thread: M1Ox1
Weight: 6 g , unit: 1000 pcs.
Type: 97320
Ref. No.: 502064

Screw ring
For components with external thread 32×2
$\varnothing 38.9 \mathrm{~mm}$, height: 7.5 mm
Material: PPS, black
Weight: 2.3 g, unit: 1000 pcs.
Type: 97282
Ref. No.: 502416

Til| ITI

$-\frac{932 \times 2}{\$ 389}$

R7s Ceramic Lampholders

For mains voltage halogen incandescent lamps

The luminaire design must ensure protection from electric shock as well as sufficient creepage distances and clearances from live parts on the back of lampholder.

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu , silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
With fixing screw M4
Weight: 25.4 g , unit: 400 pcs.
Type: 32300

Ref. No.: 100912

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu , silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M3/M4
Central hole for screw M4
Weight: 59.3 g, unit: 200 pcs.
Type: 32390 contact distance: 74.9 mm

Ref. No.: 107213

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu , silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M3/M4
Central hole for screw M4
Weight: 61 g , unit: 200 pcs.
Type: 32391 contact distance: 74.9 mm
Ref. No.: 107214

If the central hole on the bracket is used for fixing there must be a support within the luminaire to ensure that the bracket cannot be deformed.

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu , silver bulb
Nominal rating: $8 / 250$
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M3/M4
Central hole for screw M4
Weight: 61.3 g , unit: 200 pcs.
Type: 32395 contact distance: 74.9 mm

Ref. No.: 107215

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M4
Central hole for screw M4
Weight: 64.9 g , unit: 200 pcs.
Type: 32310 contact distance: 114.2 mm
Ref. No.: 107195

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M4
Central threaded bush M4
Weight: 66.5 g, unit: 200 pcs.
Type: 32320 contact distance: 114.2 mm

Ref. No.: 107194

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M4
Central hole for screw M4
Weight: 65.4 g, unit: 200 pcs.
Type: 32340 contact distance: 114.2 mm

Ref. No.: 107193

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu, silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 66.7 g, unit: 200 pcs.
Type: 32360 contact distance: 114.2 mm
Ref. No.: 107192

Partly enclosed R7s lampholder
Casing: ceramic, T350
Contact pin: Cu , silver bulb
Nominal rating: 8/250
Leads: Cu nickel-plated, stranded conductors
$0.75 \mathrm{~mm}^{2}$, PTFE-insulation, length: 200 mm
Oblong holes for screws M4
Central hole for screw M5
Weight: 71.3 g , unit: 200 pcs.
Type: 32380 contact distance: 114.2 mm

Ref. No.: 109497

R7s Metal Lampholders

For mains voltage halogen incandescent lamps

R7s lampholder
Casing: Al, T300, contact pin: Cu, silver bulb Nominal rating: 10/250
Lead: Cu nickel-plated, stranded conductors
$1 \mathrm{~mm}^{2}$, PTFE-insulation, length: 300 mm
Fixing flange
Fixing holes for screws M3
Weight: 15.7 g , unit: 1000 pcs.
Type: 30523
Ref. No.: 100710

R7s lampholder
Casing: Al, T300, contact pin: Cu, silver bulb Nominal rating: 10/250
Lead: Cu nickel-plated, stranded conductors
$1 \mathrm{~mm}^{2}$, PTFE-insulation, length: 350 mm
Fixing bracket
Fixing holes for screws M4
Weight: 24.8 g , unit: 500 pcs.

Type: 30550
Ref. No.: 100720

Connectors

Modular system for various assembly options VDE registered
Connectors can be delivered pre-assembled with lampholder and lead assemblies

Male and female plug
Nominal rating: 7/600
For cable: $0.3-0.9 \mathrm{~mm}^{2}$
For crimping on the end of lead
Material: brass, tinned
Weight: 0.1 g , unit: 5000 pcs.
Type: 93088 male plug
Ref. No.: 505251
Type: 93089 female plug
Ref. No.: 506807

Male and female casing
For male and female plug
For push-fit assembly
Material: PA, natural
Weight: 0.8/1 g, unit: 2500 pcs.
Type: 97355 male casing
Ref. No.: 509295 UL94V-O
Ref. No.: 508562 UL94V-2
Type: 97356 female casing
Ref. No.: 509296 UL94V-O
Ref. No.: 508563 UL94V-2

LAMPHOLDERS MADE OF THERMOPLASTICS, METAL AND PORCELAIN

LAMPHOLDERS FOR GENERAL-SERVICE INCANDESCENT LAMPS AND LED RETROFIT LAMPS

The general-service light bulb owes its name to its bulbous shape, which has remained almost unchanged to this day. The tungsten filament contained within the bulb's glass shell, in which there used to be a vacuum but which is nowadays more usually filled with an inert gas, begins to glow as electricity is passed through it. Despite the considerable technical progress that has been made, the typical disadvantages associated with light bulbs still remain. For instance, incandescent lamps mainly radiate heat with no more than 5-10\% light output and have a service life of approx. 1000 operating hours. As a result of energy-efficiency regulations in the various regions of the world, the use of all-purpose incandescent lamps has been limited or even banned.

LED Retrofit lamps that comply with energy-efficiency regulations are being used as a replacement for all-purpose incandescent lamps and use the same lampholder systems found with E12/E14, E26/E27, E39/E40, B15d and B22d bases.
This makes it easy to switch to the more economical LED retrofit lamp when replacing a defective incandescent lamp. It is not necessary to replace the lampholder.

VS lampholders

Depending on the operating conditions, lampholders can be made of thermoplastics, metal or porcelain. Metal lampholders are most often used for high-grade decorative luminaires. In accordance with protection class I, metal lampholders must be included in the measures taken to earth the luminaire.

Due to their heat resistance, Edison lampholders made of porcelain are frequently used for higher-output lamps. Classic lampholder materials like metal and porcelain are increasingly being displaced by modern thermoplastics.
E14 lampholders 176-183
E14 thermoplastic lampholders, one-piece and cover caps 176-179
E14 thermoplastic lampholders, three-piece 180-182
E14 metal lampholders, three-piece 182-183
E27 lampholders 184-199
E27 thermoplastic lampholders, one-piece and cover caps 184-188
E27 renovation kit lampholders189
E27 thermoplastic lampholders, three-piece 189-192
E27 porcelain lampholders 193-194
E27 metal lampholders, three-piece 195
E27 metal pull-switch lampholders 196
E27 thermoplastic rocker switch lampholders 197
E27 festoon lampholders 198
B22d lampholders, accessories 199
Accessories for E14, E27 and B22d lampholders 200-203
E40 porcelain lampholders 204
Technical details for incandescent lamps 206-215
General technical details 228-236
Glossary 237-239

E14 Thermoplastic Lampholders, One-piece

For incandescent lamps with base E 14

El4 lampholders with temperature marking
Brass-finished versions are available on request.

E14 lampholders, for cover caps
Plain casing
Casing: PET GF, T210, nominal rating: $2 / 250$
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Weight: $11.3 / 11.4 \mathrm{~g}$, unit: 1000 pcs.
Type: 64001
Ref. No.: 109384 white
Ref. No.: 109383 black

E14 lampholders, for cover caps
External thread 28×2 IEC 60399
Casing: PET GF, T210, nominal rating: $2 / 250$
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Weight: $12.5 / 12.2 \mathrm{~g}$, unit: 1000 pcs.
Type: 64101
Ref. No.: 109387 white
Ref. No.: 109386 black

E14 lampholders, for cover caps
External thread 28×2 IEC 60399, with flange
Casing: PET GF, T210, nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Weight: 12.7 g , unit: 1000 pcs.
Type: 64201
Ref. No.: 503924 white
Ref. No.: 503923 black

E14 lampholders, for cover caps
Profiled shape, short external thread 28×2 IEC 60399
Casing: PET GF, T210, Nominal rating: $2 / 250$
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Weight: $8.5 / 8.4 \mathrm{~g}$, unit: 1000 pcs.
Type: 64370
Ref. No.: 546456 white
Ref. No.: 546454 black

Lampholders for General-service Incandescent

E14 lampholders
Profiled shape, short external thread 28×2 IEC 60399
Casing: PET GF, T210, nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
For clipping-in
Weight: $6.6 / 6.8 \mathrm{~g}$, unit: 1000 pcs.
Type: 64360
Ref. No.: 506247 white
Ref. No.: 506249 black

E14 lampholders
Profiled shape, nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Lateral push-fit foot for cut-out $10 \times 20 \mathrm{~mm}$
for wall thickness $0.6-1.3 \mathrm{~mm}$
Tilt of lamp axis: 6°
For cover cap 503579
Weight: 9.1/9.2 g, unit: 1000 pcs.
Type: 64307
Ref. No.: $\mathbf{1 0 8 9 8 3}$ PBT GF, white, T180/-20
Ref. No.: $\mathbf{5 0 9 2 6 3}$ PET GF, natural, T210
E14 lampholder
Profiled shape
Casing: PBT GF, white, T180/-20
Nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
For insertion, clipping-in or bayonet fixing
for plastic cut-out: $\varnothing 27.5 \mathrm{~mm}$
with wall thickness: 2.5 mm
Weight: 7.1 g , unit: 1000 pcs.
Type: 64308
Ref. No.: 533818
E14 lampholder
Profiled shape
Casing: PBT GF, white, T180/-20
Nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
For insertion: clipping-in for
a profiled hole with wall thickness $0.6-0.7 \mathrm{~mm}$
Weight: 9 g , packaging unit: 1000 pcs.
Type: 64314
Ref. No.: on request

E14 double lampholder
Profiled shape
Casing: PBT GF, white
Nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
For insertion: clipping-in for a profiled hole
Weight: 29 g, packaging unit: 100 pcs.
Type: 64380
Ref. No.: 565816

Cover Caps

For E14 thermoplastic lampholders, one-piece

Brass-finished versions are available on request.

Cover cap for lampholders type 64307
For luminaires of protection class II
Material: PP, white
Weight: 2.4 g , unit: 1000 pcs.
Type: 97322

Ref. No.: 503579

Cover caps

Material: PA GF
Female nipple: $\mathrm{M} 10 \times 1$
Weight: 7.6/8.8 g, unit: 1000 pcs.
Type: 85075
Ref. No.: 109110
white
Ref. No.: 109112 black

Cover caps
Material: PA GF
Moulded thread: M1Ox1
Rotation stop: external
Weight: 2.7 g , unit: 1000 pcs.
Type: 97636
Ref. No.: 109676 white
Ref. No.: 109677 black

Cover caps

Material: PA GF
Moulded thread: MiOx
Rotation stop: external
With locking screw
Weight: 3 g , unit: 1000 pcs.
Type: 85076
Ref. No.: 400818 white
Ref. No.: 400817 black

Cover caps
Height: 19 mm
Material: PA GF
Moulded thread: MiOx
Rotation stop: external
With locking screw
Weight: 3.6/3.5 g, unit: 1000 pcs
Type: 85074
Ref. No.: 520735 white
Ref. No.: 520736 black

Cover caps
Height: 19 mm
Material: PA GF
Profiled hole: $\varnothing 10.4$ mm
Rotation stop: internal and external
Weight: 2.7 g , unit: 1000 pcs.
Type: 97708
Ref. No.: 520759 white
Ref. No.: 520760 black

Cover caps
With peg
With integrated cord grip
For leads HO3VVH2-F 2X0.75
Material: PA GF
Weight: 4.2/4.3 g, unit: 1000 pcs
Type: 97000
Ref. No.: 503457 white
Ref. No.: 503458 black

Cover cap
With male nipple: MiOxl
With rotation stop
With integrated cord grip
For leads HO3VVH2-F 2 XO .75
Material: PA GF, white
Weight: 4.1 g , unit: 1000 pcs .
Type: 97037
Ref. No.: 508067

E 14 Thermoplastic Lampholders， Three－piece

For incandescent lamps with base E14
Nominal rating：2／250
Temperature marking：T190
Brass－finished versions are available on request．

Inserts

Material：PET GF，black
Casing lock
Weight：3．9／3．2 g，unit： 1000 pcs．
Type： 81095 screw terminals： $0.5-2.5 \mathrm{~mm}^{2}$

Ref．No．： 103424

Type： 81096 push－in twin terminals： $0.5-1.5 \mathrm{~mm}^{2}$
Ref．No．： 107716

Plain casings
Material：PET GF
Weight：9／8．5 g，unit： 1000 pcs．
Type： 81093
Ref．No．： 103415 white
Ref．No．： 103414 black

Threaded casings 28×2 IEC 60399
Material：PET GF
Weight：9．8／9．6 g，unit： 1000 pcs
Type： 81109
Ref．No．： 103431 white
Ref．No．： 103430 black

Threaded casings 28×2 IEC 60399
With flange
Material：PET GF
Weight： $10.6 / 10.4 \mathrm{~g}$ ，unit： 1000 pcs．
Type： 81120
Ref．No．： 103443 white
Ref．No．： 103442 black

Caps

Material: PA GF
Female nipple: $\mathrm{M} 10 \times 1$
Height: 13.7 mm
Weight: 6.9/7.2 g, unit: 1000 pcs.
Type: 81002
Ref. No.: 109102 white
Ref. No.: 109103 black

Caps

Material: PA GF
Female nipple: MiOx
Height: 18.7 mm
Weight: $7 / 7.3 \mathrm{~g}$, unit: 1000 pcs.
Type: 81024
Ref. No.: 109805 white
Ref. No.: 109145 black

Caps

Material: PA GF
Moulded thread: M10x1
Rotation stop: external
Height: 13.7 mm
Weight: 3.3/3.7 g, unit: 1000 pcs.
Type: 96159
Ref. No.: 109095 white
Ref. No.: 109084 black

Caps

Material: PA GF
Moulded thread: M1Ox1
Rotation stop: external
Height: 18.7 mm
Weight: 3.6/3.9 g, unit: 1000 pcs.
Type: 96211
Ref. No.: 109149 white
Ref. No.: 109150 black

Caps

Material: PA GF
Moulded thread: MiOx
Rotation stop: external
With locking screw
Height: 13.7 mm
Weight: $3.7 / 4 \mathrm{~g}$, unit: 1000 pcs.
Type: 81130
Ref. No.: 109041
white
Ref. No.: 109054 black

Caps

Material: PA GF
Moulded thread: M1Ox1
Rotation stop: external
With locking screw
Height: 18.7 mm
Weight: 3.9/4.3 g, unit: 1000 pcs.
Type: 81132
Ref. No.: 109152 white
Ref. No.: 109153 black

Caps

Material: PA GF
Round hole: $\varnothing 10.5 \mathrm{~mm}$
Rotation stop: internal
Height: 13.7 mm
Weight: 3.3 g , unit: 1000 pcs.
Type: 96004
Ref. No.: 508352 white
Ref. No.: 508353 black

E14 Metal Lampholders, Three-piece

For incandescent lamps with base E 14

Nominal rating: 2/250
Temperature marking: T190/T240
Type: 513 plain casing
Type: 514 threaded casing 28×2

Insert

Material: porcelain, white
Casing lock
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Weight: 10.3 g , unit: 500 pcs.
Type: 83142
Ref. No.: 550375

Plain casings
Material: zinc-coated polished steel
Weight: 14.3/14.2/18.3/18.2 g
Unit: 500 pcs.
Type: 81019 insulating threaded ring: PET, T190
Ref. No.: 103359 chrome-finish
Ref. No.: 103360 brass-finish
Type: 81018 insulating threaded ring: steatite, T240

Ref. No.: 507049 chrome-finish
Ref. No.: 507050 brass-finish

Threaded casings 28×2 IEC 60399
Material: zinc-coated polished steel
Weight: 14.4/14.4/18.9/18.9 g
Unit: 500 pcs.
Type: 81022 insulating threaded ring: PET, T190
Ref. No.: 103365 chrome-finish
Ref. No.: $\mathbf{1 0 3 3 6 6}$ brass-finish
Type: 81017 insulating threaded ring: steatite, T240
Ref. No.: $\mathbf{5 0 7 0 5 2}$ chrome-finish
Ref. No.: $\mathbf{5 0 7 0 5 3}$ brass-finish

Caps

Material: zinc-coated polished steel
Female nipple: M10xl
Weight: 7.2/7.1/7.9/7.8 g
Unit: 500 pcs.
Type: 80006
Ref. No.: 102946 chrome-finish
Ref. No.: 102947 brass-finish
Type: 80003 with earth terminal
Ref. No.: 102938 chrome-finish
Ref. No.: 102939 brass-finish

E27 Thermoplastic Lampholders, One-piece

For incandescent lamps with base E27

E27 lampholders

Brass-finished versions are available on request.

E27 lampholders, for cover caps
Plain casing
Casing: PET GF, T210
Nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Weight: 17.4 g , unit: 500 pcs .
Type: 64401
Ref. No.: 108936 white
Ref. No.: 500810 black

E27 lampholders, for cover caps
External thread 40×2.5 IEC 60399
Casing: PET GF, T210
Nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Weight: 19.1/18.8 g, unit: 500 pcs
Type: 64501

Ref. No.: 108965 white

Ref. No.: 109429 black

E27 lampholders, for cover caps
External thread 40×2.5 IEC 60399, with flange
Casing: PET GF, T210
Nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M4
Weight: 21.4 g , unit: 500 pcs.
Type: 64601
Ref. No.: 501358 white
Ref. No.: 501356 black

E27 lampholders, for cover caps
Profiled shape, external thread 40×2.5 IEC 60399
Casing: PET GF, T210, nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: $14.8 / 14.9 \mathrm{~g}$, unit: 500 pcs .
Type: 64719

Ref. No.: 504303 white

Ref. No.: $\mathbf{5 0 4 3 0 2}$ black

E27 lampholders, for cover caps
Profiled shape, external thread 40×2.5 IEC 60399
Casing: PET GF, T210, nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: $11.4 / 11.3 \mathrm{~g}$, unit: 500 pcs .
Type: 64775
Ref. No.: 506255 white
Ref. No.: 506257 black

E27 lampholders
Profiled shape, plain, nominal rating: 4/250
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: $11.7 / 11.5 \mathrm{~g}$, unit: 500 pcs.
Type: 64785
Ref. No.: $\mathbf{5 0 6 2 6 3}$ PET GF, white, T21O
Ref. No.: $\mathbf{5 0 6 2 6 5}$ PET GF, black, T210

E27 lampholder

For cover caps type 97545/80023 (see p. 187)
Profiled shape, plain, nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixing holes for screws M3
Rear fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: 11.5 g , unit: 500 pcs.
Type: 64770
Ref. No.: 108953 PET GF, natural, T210

E27 lampholder

For luminaires of protection class II
Profiled shape, plain
Casing: PET GF, white, T210
Nominal rating: 4/250
Screw terminals: 0.5-2.5 mm²
Lateral fixing hole for screw M4
Tilt of lamp axis: 3°
Weight: 15.2 g , unit: 500 pcs.
Type: 64781

Ref. No.: 503041

E27 lampholders
Profiled shape, plain
Casing: PET GF, T210
Nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Lateral fixing hole for screw M4
Tilt of lamp axis: 3°
Weight: 13.3 g , unit: 500 pcs .
Type: 64740
Ref. No.: 108747
white
Ref. No.: 529599 natural

10

E27 lampholder
Profiled shape, external thread 40×2.5 IEC 60399
Casing: PET GF, natural, T210, nominal rating: 4/250
Push-in twin terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Lateral push-fit foot for cut-out $10 \times 20 \mathrm{~mm}$
Fixing clips for wall thickness $0.4-1 \mathrm{~mm}$
Tilt of lamp axis: 12°
For cover cap 504615 (see below)
Weight: 14.7 g , unit: 500 pcs.
Type: 64741

Cover Caps

For E27 thermoplastic lampholders, one-piece and for B22d thermoplastic lampholders

Cover cap for lampholder 108758 (see above) For luminaires of protection class II
Material: PA GF, white
Weight: 2.7 g , unit: 500 pcs.
Type: 97321
Ref. No.: 504615

Protection caps for E27 lampholders with bracket with earth connection 400772 (s. p. 201) For lampholder type 64770/64785 (s. p. 185) For luminaires of protection class II
Material: PA GF, natural
Weight: 4.8 g , unit: 500 pcs.
Type: 97497
Ref. No.: 526886

Cover caps

Material: PA GF
Female nipple: $\mathrm{MiOx1}$
Weight: 9.6/9.9 g, unit: 500 pcs.
Type: 85070
Ref. No.: 109077 white
Ref. No.: 109092 black

Cover caps

Material: PA GF
Moulded thread: M10x1
Cross groove for rotation stop: external
Weight: 4.4/4.6 g, unit: 500 pcs.
Type: 97665
Ref. No.: 109679 white
Ref. No.: 109680 black

Cover caps
Material: PA GF
Moulded thread: M1Ox1
Cross groove for rotation stop: external
With lateral hole
Weight: $4 / 4.6 \mathrm{~g}$, unit: 500 pcs.
Type: 97664
Ref. No.: 109795 white
Ref. No.: 109794 black

Cover caps
Material: PA GF
Moulded thread: M10x1
Cross groove for rotation stop: external
With locking screw
Weight: $4.7 / 4.9 \mathrm{~g}$, unit: 500 pcs .
Type: 85077
Ref. No.: 400819 white
Ref. No.: 400820 black

Cover caps

For E27 lampholders type 64770
Material: PA GF, black
Moulded thread: M10x1
Cross groove for rotation stop: external
Weight: $3.1 / 3.4 \mathrm{~g}$, unit: 500 pcs.
Type: 97545

Ref. No.: 532390

Type: 80023 with locking screw
Ref. No.: 532391

Cover caps
Material: PA GF
Profiled hole: $\varnothing 10.4 \mathrm{~mm}$
Rotation stop: internal and external
Weight: 5.7/5.9 g, unit: 500 pcs.
Type: 97698
Ref. No.: 109560 white
Ref. No.: 109184 black

Cover caps

Material: PA GF
Round hole: $\varnothing 10.5 \mathrm{~mm}$
Rotation stop: external
Fixing holes for screws M4
Weight: $5.4 / 5.5 \mathrm{~g}$, unit: 500 pcs .
Type: 97511
Ref. No.: 109045 white
Ref. No.: 109062 black

Cover caps

Conical shape
Material: PA GF
Moulded thread: M10x1
Cross groove for rotation stop: external
Weight: 8.9/8.8 g, unit: 500 pcs.
Type: 97260
Ref. No.: 109555 white
Ref. No.: 109556 black

Cover caps
Conical shape
Material: PA GF
With integrated cord grip
For leads H03VV-F 2×0.5 or
HO3VV-F 2X0.75
Weight: $10.6 / 10.5 \mathrm{~g}$, unit: 500 pcs .
Type: 83282
Ref. No.: 109159 white
Ref. No.: 109462 black

Cover caps

Material: PA GF
With integrated cord grip
For leads HO3VV-F 2 XO .5 or
HO3VV-F 2X0.75
Weight: $6.6 / 5.8 \mathrm{~g}$, unit: 500 pcs .
Type: 83283
Ref. No.: 504769 white
Ref. No.: 507075 black

E27 Renovation Kit Lampholders

For incandescent lamps with base E27

E27 renovation kit lampholders with suspension
Profiled shaped lampholder 64770-T210
Cover cap with cord grip 532394
Nominal rating: 4/250
Lead: Cu , stranded conductors $0.75 \mathrm{~mm}^{2}$, double PVC-insulation, length: 150 mm
Weight: $25.8 / 26.2 \mathrm{~g}$, unit: 150 pcs .
Type: 64770
Ref. No.: 564680 black, with screw terminal
Ref. No.: 564681 black, with push-in terminal

E27 Thermoplastic Lampholders, Three-piece

For incandescent lamps with base E27

Nominal rating: 4/250
Temperature marking: T190
Brass-finished versions are available on request.

Inserts
Material: PET GF, black
Casing lock
Weight: $5.7 / 6.1 \mathrm{~g}$, unit: 500 pcs .
Type: 83285 push-in terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Ref. No.: 103643
Type: 83011 screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Ref. No.: 103520

Plain casings
Material: PET GF
Weight: $14.5 / 14.3 \mathrm{~g}$, unit: 500 pcs.
Type: 83000
Ref. No.: 103468 white
Ref. No.: 103467 black

Threaded casings 40×2.5 IEC 60399
Material: PET GF
Weight: 17/16.1 g, unit: 500 pcs.
Type: 83002
Ref. No.: 103484 white
Ref. No.: 103483 black

Threaded casings 40×2.5 IEC 60399
With flange
Material: PET GF
Weight: $16.7 / 17 \mathrm{~g}$, unit: 500 pcs .
Type: 83173
Ref. No.: 103570 white
Ref. No.: 103569 black

Caps

Material: PA GF
Profiled hole: $\varnothing 10.5 \times 8.6 \mathrm{~mm}$
Fixing holes for screws M4
Height: 13.8 mm
Weight: $5.6 / 6 \mathrm{~g}$, unit: 500 pcs.
Type: 96148
Ref. No.: 109188 white
Ref. No.: 109187 black

Caps

Material: PA GF
Female nipple: MIOx
Height: 17 mm
Weight: 9.8/10.1 g, unit: 500 pcs.
Type: 83007
Ref. No.: 109052 white
Ref. No.: 109039 black

Caps with earth terminal
Material: PA GF
Female nipple: $\mathrm{M} 10 \times 1$
Height: 17 mm
Weight: $10.7 / 11 \mathrm{~g}$, unit: 500 pcs.
Type: 83035
Ref. No.: 109098 white
Ref. No.: 109099 black

Caps

Material: PA GF
Moulded thread: M10x1
Rotation stop: external
Height: 17 mm
Weight: $6.7 / 7 \mathrm{~g}$, unit: 500 pcs
Type: 96147
Ref. No.: 109195 white
Ref. No.: 109196 black

Caps

Material: PA GF
Moulded thread: MiOx 1
Rotation stop: external
With locking screw
Height: 17 mm
Weight: 7.1/7.3 g, unit: 500 pcs.
Type: 83293
Ref. No.: 109087 white
Ref. No.: 109074 black

Caps

Material: PA GF
Round hole: $\varnothing 10.5 \mathrm{~mm}$
Rotation stop: internal and external
Height: 17 mm
Weight: 5.9/6.6 g, unit: 500 pcs.
Type: 96154
Ref. No.: 109190 white
Ref. No.: 109191 black

Caps

Material: PA GF
Profiled hole: $\varnothing 10.3 \mathrm{~mm}$
Rotation stop: internal and external
Height: 17 mm
Weight: 5.9/6.6 g, unit: 500 pcs.
Type: 96124
Ref. No.: 109559 white
Ref. No.: 109512 black

Caps

Conical shape
Material: PA GF
Female nipple: $\mathrm{M} 10 \times 1$
Height: 19.2 mm
Weight: 14.2/15.2 g, unit: 500 pcs.
Type: 83274
Ref. No.: 109081 white
Ref. No.: 109093 black

Lampholders for General-service Incandescent

Caps

Conical shape
Material: PA GF
Round hole: $\varnothing 10.5 \mathrm{~mm}$
Rotation stop: internal
Height: 19.2 mm
Weight: 10.4/10.6 g, unit: 500 pcs.
Type: 96172
Ref. No.: 109060 white
Ref. No.: 109044 black

E27 Porcelain Lampholders

For incandescent lamps with base E27

E27 lampholders, one-piece
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: 0.5-2.5 mm²
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 60.6 g , unit: 250 pcs.
Type: 62050

Ref. No.: 102599

Type: 62010 with lamp safety catch (with spring)

Ref. No.: 102577

Type: 62009 with lamp safety catch (with crushing)

Ref. No.: 544605

E27 lampholder, one-piece
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing pillars for screws M3
Weight: 66.3 g , unit: 250 pcs .
Type: 62015

Ref. No.: 102582

E27 lampholder, one-piece
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 60.5 g , unit: 200 pcs .
Type: 62070
Ref. No.: 543304

Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing oblong holes for screws M4
Weight: 66.5 g , unit: 250 pcs.
Type: 62310

Ref. No.: 102624

E27 lampholder
Material: porcelain, white, T270
Nominal rating: 4/250/5 kV
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Spring loaded central contact
Fixing holes for screw M4
Weight: 66.5 g , unit: 250 pcs .
Type: 62370
Ref. No.: 543303

E27 lampholder, three-piece
Material: porcelain, white, T240, nominal rating: $4 / 250$, screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Weight: 116/125/116/125/121.7/130.7 g
Unit: 25 pcs
Type: 62061 female nipple: $\mathrm{M} 10 \times 1$
Ref. No.: 535684
Ref. No.: 535685 with earth screw
Type: 62062 female nipple: M13x1
Ref. No.: 536451
Ref. No.: 536452 with earth screw

Type: 62063 female nipple: G3/8A
Ref. No.: 534832
Ref. No.: 534833 with earth screw

E27 Metal Lampholders, Three-piece

For incandescent lamps with base E27

Nominal rating: 4/250
Type: 670 plain casing
Type: 671 threaded casing 40×2.5
Temperature marking: T240

Ref. No.: 103595
Type: 83223 with earth terminal
Ref. No.: 103597

Material: zinc-coated polished steel
Weight: 23.5/22.9/27.1/27.1g
Unit: 500 pcs.
Type: 83218 insulating threaded ring: PPS
Ref. No.: 103582 chrome-finish
Ref. No.: 103583 brass-finish
Type: 83226 insulating threaded ring: steatite

Ref. No.: 504640 chrome-finish
Ref. No.: 504641 brass-finish

Threaded casings 40×2.5 IEC 60399
Material: zinc-coated polished steel
Weight: 24/23.1/27.3/27.6 g
Unit: 500 pcs.
Type: 83219 insulating threaded ring: PPS
Ref. No.: 103590 chrome-finish
Ref. No.: 103591 brass-finish
Type: 83227 insulating threaded ring: steatite
Ref. No.: 504643 chrome-finish
Ref. No.: 504644 brass-finish

Caps

Material: zinc-coated polished steel
Female nipple: $\mathrm{MiOx1}$
Weight: 10.6/10.8/11.4/11.3 g
Unit: 500 pcs.
Type: 80342
Ref. No.: 103020 chrome-finish
Ref. No.: 103021 brass-finish
Type: 80343 with earth terminal
Ref. No.: 103026 chrome-finish
Ref. No.: 103027 brass-finish

E27 Metal Pull-switch Lampholders

For incandescent lamps with base E27

Nominal rating: 2/250
Type: 55204 plain casing, with pull cord
Type: 55203 plain casing, with draw chain
Type: 55304 threaded casing 40×2.5, with pull cord
Type: 55303 threaded casing 40×2.5, with draw chain

Insert with pull cord
Material: porcelain, white
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Length of cord: 250 mm , casing lock
Weight: 28 g , unit: 500 pcs.
Type: 83006
Ref. No.: 103504
End button for pull cord, material: PS, white
Weight: 0.8 g , unit: 500 pcs.
Type: 96010

Ref. No.: 105144

Insert for brass chain
Material: porcelain, white
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Weight: 29.4 g , unit: 500 pcs .
Type: 83008

Ref. No.: 103515

Draw chain with end button
Material: brass, length of chain: 85 mm
Weight: 3.9 g , unit: 500 pcs.

Ref. No.: 104928

Casings

Material: brass, passivated
Insulating threaded ring: PPS
Weight: $21.5 / 22.7 \mathrm{~g}$, unit: 500 pcs.
Type: 83218 plain casing
Ref. No.: 103587
Type: 83219 threaded casing 40×2.5
Ref. No.: 103594

Cap with earth terminal
Material: brass, passivated
Female nipple: MiOx
With insulating insert
Weight: 20 g , unit: 500 pcs.
Type: 80014
Ref. No.: 102956

E27 Thermoplastic Rocker Switch Lampholders

For incandescent lamps with base E27
Nominal rating: 2/250
Temperature marking: T180
Suitable casings see page 189-190:
Type: 83000 plain casing
Type: 83002 threaded casing 40×2.5
Type: 83173 threaded casing 40×2.5, with flange
Inserts with switch
Material: PET GF, white
Screw terminals: 0.5-2.5 mm²
Weight: 11/11.1 g, unit: 500 pcs.
Type: 83015

Ref. No.: 107331 switch, white
Ref. No.: 107096 switch, black

Caps

Material: PA GF
Female nipple: M10x1
Weight: 14.2/14.7 g, unit: 500 pcs.
Type: 83260
Ref. No.: 109198 white
Ref. No.: 109199 black

Caps

Material: PA GF
Profiled hole: $\varnothing 10.4$ mm
Rotation stop: internal and external
Weight: 8.2/10.4 g, unit: 500 pcs.
Type: 96229
Ref. No.: 109200 white
Ref. No.: 109201 black

E27 Festoon Lampholders

For lighting chains of protection class II

Degree of protection: IP44
Type: 64710/11
The lampholders may only be operated with the
lamp pointing downwards and with a gasket.

E27 festoon lampholder
For lamps max. 40 W
Material: PBT GF, black
Nominal rating: 4/250
Blade contacts
for festoon lead H05RN H2-F 2X1. 5
To be used only with protection cap
Weight: 13.8 g , unit: 500 pcs.
Type: 83297
Ref. No.: 109158

Protection cap
For E27 festoon lampholders
Material: PA GF, black
With ready-fitted stainless screws
Weight: 6.3 g , unit: 500 pcs.
Type: 83300 with non-removable screws
Ref. No.: 109243

Protection cap
For E27 festoon lampholders
Material: PA GF, black
With ready-fitted stainless screws
Fixing holes for screws M4
Weight: 7.2 g, unit: 500 pcs.
Type: 83301 with non-removable screws

Ref. No.: 502515

Gasket

For E27 festoon lampholders
Material: silicone
Weight: 4 g , unit: 500 pcs.
Type: 98006
Ref. No.: 106817

B22d Lampholders, Accessories

For mains voltage halogen incandescent lamps

B22d lampholders

For cover caps (see p. 186-188)
Nominal rating: 2/250
Push-in twin terminals: $0.5-1.5 \mathrm{~mm}^{2}$
Fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST3.9-C/F
Weight: $12.7 / 12.3 \mathrm{~g}$, unit: 500 pcs
Type: 64800
Ref. No.: 108748 PET GF, T180, white
Ref. No.: 544621 PET GF, T210, white

Plain casing
For B22d lampholders type 64800
For cover caps (see p. 186-188)
Threaded casing on request
Material: PA GF, white
Weight: 14.5 g , unit: 500 pcs .
Type: 96021
Ref. No.: 504749

Accessories

For E14, E27 lampholders, one-piece and three-piece and B22d lampholders

The luminaire manufacturer is responsible for
the right choice of accessories.
Brass-finished versions are available on request.

Plastic screw rings
For E14 lampholders
with external thread 28×2 IEC 60399
Weight: 3.6/3.2/1.8/1.6 g, unit: 1000 pcs.
Type: $03210 \varnothing 43 \mathrm{~mm}$, height: 15 mm
Ref. No.: 100125 PET GF, white
Ref. No.: 109162 PA GF, black
Type: 05202 Ø 34 mm , height: 7.5 mm
Ref. No.: 107154 PET GF, white
Ref. No.: 109166 PA GF, black

Metal screw ring
For El4 lampholders
with external thread 28×2 IEC 60399
Material: zinc-coated polished steel, chrome-finish
$\varnothing 40 \mathrm{~mm}$, height: 12 mm
Weight: 4.3 g , unit: 500 pcs.

Type: 06700
Ref. No.: 100194

Front gasket
For E14 lampholders type 64308, 64360 and 64380
As lamp safety catch and for protection
against moisture acc. to IEC 60079-15
Material: elastomer
Weight: 1.1 g , unit: 2000 pcs.
Type: 98013
Ref. No.: 534689

Plastic screw rings
For E27 and B22d lampholders
Weight: 4.9/4.4/3.3/3 g, unit: 500 pcs.
Type: $08610 \varnothing 55 \mathrm{~mm}$, height: 15 mm

Ref. No.: 100270 PET GF, white
Ref. No.: 109285 PA GF, black
Type: $08701 \varnothing 47.8 \mathrm{~mm}$, height: 9 mm
Ref. No.: 100273 PET GF, white
Ref. No.: 109291 PA GF, black

Lampholders for General-service Incandescent

Metal screw ring
For E27 and B22d lampholders
Material: zinc-coated polished steel, chrome-finish $\varnothing 56.5 \mathrm{~mm}$, height: 13 mm
Weight: 7 g , unit: 500 pcs.
Type: 07400

Ref. No.: 100217

Brackets for E14 lampholders
For fastening with nipples 109249, 109247
Material: zinc-coated polished steel
Fixing holes for screws M3
Weight: 5.5/5.3 g, unit: 1000 pcs.
Type: 94068 internal bracket 90°
Ref. No.: 106767
Type: 94069 internal bracket 110°
Ref. No.: 106768

U-shaped clips
For E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish
For wall thickness: 0.5-2 mm
Weight: 3.7/4.3 g, unit: 2500 pcs.
Type: 94435

Ref. No.: 109621

Type: 80433 with earth terminal

Ref. No.: 103087

Brackets: $90^{\circ}, 12.5 \times 47.1 \mathrm{~mm}$
For E14 and E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish Fixing hole for screw M5
Weight: $5.6 / 4.8 \mathrm{~g}$, unit: 500 pcs
Type: 80475 with earth terminal

Ref. No.: 400779

Type: 94444
Ref. No.: 401536

Brackets: $100^{\circ}, 22.9 \times 36.6 \mathrm{~mm}$
For E14 and E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish
Fixing holes for self-tapping screws
acc. to ISO 1481/7049-ST2.9-C/F
Tapped hole M4
Weight: 5.5/4.6 g, unit: 1000 pcs.
Type: 80476 with earth terminal
Ref. No.: 400772
Type: 94438
Ref. No.: 401549

Lampholders for General-service Incandescent

Fixing bracket
For E14 and E27 lampholders, one-piece
Material: zinc-coated polished steel, chrome-finish
With slots for screws M4
Weight: 4.6 g , unit: 1000 pcs.
Type: 94450
Ref. No.: 106829

Fixing brackets: $8^{\circ}, 14.5 \times 39 \mathrm{~mm}$
For E27 thermoplastic lampholders, one-piece
Material: PET GF, white
With cable holder
Oblong hole for screw M4
Weight: $3 / 3.6 \mathrm{~g}$, unit: 1000 pcs.
Type: 97750 fixing holes: $\varnothing 4$ mm
Ref. No.: 109725
Type: 97752 fixing holes for self-tapping
screws acc. to ISO 1481/7049-ST3.9-C/F

Ref. No.: 109728

Nipples
For E14 cover caps with moulded thread: M1Ox
Cross groove for rotation stop: external
For E27 caps (see p. 190-192)
Material: PA, white
Male nipple: MiOxl , with hexagon flange
Weight: 0.5 g , unit: 1000 pcs.
Type: 09700/09703/09708
Ref. No.: 538089 length: 15 mm
Ref. No.: 109249 length: 10 mm
Ref. No.: 109247 length: 7 mm
Locking nut for thread $\mathrm{MIOx1}$
Material: PA GF
Weight: 0.9 g , unit: 1000 pcs.
Type: 97267
Ref. No.: 507797 white
Ref. No.: 507798 black

Cord grip with insulating socket
For E14 and E27 lampholders
Material: PA, natural
For luminaires of protection class II
For leads HO3VVH2-F 2 XO .75
Weight: 0.6 g , unit: 1000 pcs.
Type: 97632
Ref. No.: 534097

Lampholders for General-service Incandescent

Cable grips
For leads HO3VV-F and HO3VVH2-F 2XO.5
or 2X0. 75
Material: PA
Male nipple: M10x1, length: 11 mm
With locking screw
Weight: 1.6/1.5 g, unit: 1000 pcs.
Type: 09701
Ref. No.: 109248 white
Ref. No.: 109253 black

Cord grip
For E14 lampholders, three-piece,
with cap height: 19 mm
For leads HO3VVH2-F
Material: PA, black
Weight: 0.6 g , unit: 1000 pcs.
Type: 09501
Ref. No.: 106948

Cord grip
For E27 lampholders, three-piece (without switch)
For leads HO3VVH2-F
Weight: 0.9 g , unit: 1000 pcs.
Type: 09502
Ref. No.: 106949 PA, black
Insulating socket
Material: PA, transparent
Weight: 0.5 g , unit: 1000 pcs.
Type: 09705
Ref. No.: 109592
Cord grips
For leads H03VV-F 2X0.5 or
H03VV-F 2X0.75
Material: PA
Weight: 0.9/0.8/1.7/1.6 g, unit: 1000 pcs.
Type: 09606 cord grips
Ref. No.: 506026 white
Ref. No.: 506027 black
Type: 96160 screw caps
Ref. No.: 109318 white
Ref. No.: 109317 black

Insulating socket for E14 lampholders
Material: PA, transparent
Weight: 1 g, unit: 1000 pcs.
Type: 09704
Ref. No.: 109600

E40 Porcelain Lampholders

For incandescent lamps with base E40

Nominal rating: 18/500/5 kV
Screw terminals: $1.5-4 \mathrm{~mm}^{2}$
Spring loaded central contact

E40 lampholders

Material: porcelain, white, T270
Oblong holes for screws M5
Weight: 224/229.3/224/229.3 g
Unit: 48 pcs
Type: 12800/12801
Ref. No.: 108208
Ref. No.: 107780
with lamp safety catch
With steel thread
Ref. No.: 532602
Ref. No.: 532603
with lamp safety catch

E40 lampholders
Material: porcelain, white, T270
Fixing bracket with slots for screws M5
Weight: 252.3/243/252.3/243 g
Unit: 48 pcs.
Type: 12810/12811
Ref. No.: 108374
Ref. No.: 108375
with lamp safety catch
With steel thread
Ref. No.: 532604
Ref. No.: 532605 with lamp safety catch
E40 lampholders
Material: porcelain, white, T270
Fixing bracket with tapped holes
for screws M5
With lamp safety catch
Weight: 252.8 g, unit: 48 pcs.
Type: 12812
Ref. No.: 108373
With steel thread
Ref. No.: 532606

5 Components for Incandescent Lamps

Transformers and converters for low-voltage halogen lamps 207
Dimmability of transformers and converters 208
Electronic converters 208-2 12
Assembly instructions 209-212
Conductors for low-voltage halogen installations 213
Lampholders for incandescent lamps 214-215
Retrofit Lamps 215
General technical details 228-236
Glossary 237-239

Technical Details - Components for Incandescent Lamps

Transformers and converters for low-voltage halogen lamps

Operating low-voltage halogen lamps depends on operating devices that transform the usual mains voltage of 230 V to under 24 V . Safety transformers, of either electromagnetic or electronic (converter) design, have been in almost exclusive use for several years now. The type plate of electromagnetic transformers bears the symbol for safety transformers in accordance with VDE 0570, corresponding to EN 61558 . Electronic converters are marked with the sign for Safety Extra-Low Voltage (SELV), which indicates that the product is an isolating converter whose secondary output is safe to touch even during no-load operation.

All Vossloh-Schwabe transformers are safety transformers, i.e. isolation transformers for supplying SELV (safety extra-low voltage) and PELV (protection extra-low voltage) circuits. With such systems, the voltage must not exceed a value of 50 V AC or 120 V DC (smoothed) between the conductors or a conductor and the earth conductor of a circuit that is separated from the mains by a safety transformer. The specified values apply for protected (non-touchable) voltages; 25 V AC and 60 VDC (smoothed) apply for exposed (touchable) voltages.

Depending on their design features to protect against touchable live parts, transformers and converters fall into one of two protection classes. Operating devices of protection class I are base-insulated and have a protective earth conductor connection terminal that must be connected to the protective earth conductor for safety reasons. Isolating transformers and converters of protection class II are equipped with double or reinforced insulation that protects against dangerous casing currents; these operating devices are solely available as independent operating devices (also see page 233; Protection Classes of Luminaires and Operating Devices).

Electronic converters can also be fitted with a functional earth terminal that must be connected to a functional earth to ensure compliance with EMC requirements. In addition, some electronic converters are designed in such a way that neither a protective earth conductor nor a functional earth needs to be connected.

Operating devices can also be differentiated according to the way they are used. Built-in transformers have to be installed in a permanent casing, e.g. a luminaire. In contrast, so-called independent transformers and converters can be operated independently of a luminaire. These are often found in ceiling installations; in order to prevent possible noise development, isolation transformers must be mounted in such a way as to avoid vibration transmission.

Transformers or converters bearing the MM mark can be mounted on surfaces of unknown flammability, which can be the case when mounting these devices on wooden furniture elements. Such devices comply with the temperature requirements of VDE 0710 , part 14 , of $<95^{\circ} \mathrm{C}$ during normal and $<115^{\circ} \mathrm{C}$ during abnormal operation.

Converters are labelled with a tc point. The stipulated temperature (e.g. $75^{\circ} \mathrm{C}$) must not be exceeded when installed so that the service life of the converter is not shortened. The temperature quoted in the triangle (e.g. 110) denotes that the surface of the converter must never (even in the event of a defect) exceed this temperature.

Protection symbols

Safety transformer

SELV

Safety Extra Low Voltage

Protection class II

Independent operating device

Furniture installation
Normal operation $<95^{\circ} \mathrm{C}$
Abnormal operation $<115^{\circ} \mathrm{C}$

If the maximum value of $130^{\circ} \mathrm{C}$ is not exceeded, the luminaire does not have to be tested in accordance with $\sqrt{ }$ conditions.
$\dagger_{\mathrm{C}}=75^{\circ} \mathrm{C}$
Measuring point for maximum permissible casing temperature

Temperature-protected converter (in this case $<110^{\circ} \mathrm{C}$)

Dimmability of transformers and converters

Electromagnetic transformers can be controlled using phase-cutting leading-edge dimmers. These dimmers "cut" the sinusoidal mains voltage in the negative and positive half wave at an angle in the ascending portion of this sinusoidal half wave. The higher the angle is set at the dimmer controls, the lower the effective value of the voltage and hence the lamp's output.

Electronic converters can be controlled using phase-cutting trailing-edge dimmers. In this case, a semiconductor ensures the predefined descending portion of the sinusoidal half wave is clipped, i.e. the voltage is reduced in reverse mode. Again, higher the angle is set at the dimmer controls, the lower the effective value of the voltage and hence the lamp's output.

Converters of the Liteline (EST 60/12.635, EST 70/12.380, EST 105/12.381 and EST 150/12.622) families can be operated using conventional phase-cutting trailing-edge and phase-cutting leading-edge dimmers.

Electronic Converters

The safe operation of electronic converters is dependent on the maximum permissible temperature not being exceeded at the measuring point. Vossloh-Schwabe has determined a casing temperature measuring point $-t_{c}$ max. - on all converter casings. To avoid shortening the service life or diminishing operating safety, the stipulated maximum temperature must not be exceeded at this tc point. This point is determined by testing the converter during normal, IEC-standardised operation at the specified max. ambient temperature (ta), which is also indicated on the type plate. As both the design-related ambient temperature and the converter's inherent heat generation, as determined by the installed load, are subject to great variation, the casing temperature should be tested at the converter's tc point under real installation conditions.

Temperature-protected converters feature a further protection symbol, namely a triangle containing the maximum temperature. This symbol certifies that the stipulated surface temperature of the device casing will not be exceed during any operating state or in the event of a defect.

Vossloh-Schwabe electronic converters are tested in accordance with EN 61347. Function tests are carried out in accordance with EN 61047 . VS converters can be operated without causing any inadmissible system reactions as all devices comply with EN 61000-3-2 on the limitation of mains harmonics. They also meet the EMC requirements of EN 61547 . These devices are thus also protected against mains surges (as defined in the standard) that can be caused by, for instance, inductive ballasts during combined operation of fluorescent and low-voltage halogen lamps.

In addition, all devices comply with the RFI requirements of EN 55015. As the highly effective integrated filter can only limit the unit's own interference, the secondary conductor should be kept to under 2 metres in length so as to avoid RFI interference in the lighting system.

Dimmable using phase-cutting leading-edge or trailing-edge dimmers

Dimmable using phase-cutting leading-edge dimmers

Dimmable using phase-cutting trailing-edge dimmers

Working principle of a phasecutting leading-edge dimmer
$\alpha=$ Ignition angle
$\lambda=$ Operating angle
$U=$ Voltage
I = Current

Working principle of a phasecutting trailing-edge dimmer

Assembly Instruction for Electronic Converters

For mounting and installing electronic converters for low-voltage halogen lamps

Mandatory regulations

DIN VDE 0100	Erection of low voltage installations
EN 60598-1	Luminaires - part 1: general requirements and tests
EN 61000-3-2	Electromagnetic compatibility (EMC) - part 3: maximum values - main section part 2: maximum values for mains harmonics (device input current up to and including 16 A per conductor)
EN 55015	Maximum values and methods of measurement for RFI suppression in electrical lighting installations and similar electrical appliances
EN 61547	Installations for general lighting purposes - EMC immunity requirements
EN 61347-1	Operating devices for lamps - part 1: general and safety requirements
EN 61347-2-2	Operating devices for lamps - part 2-2: special requirements for DC- or AC-powered electronic converters for incandescent lamps
EN 61047	DC- or AC-powered electronic converters for incandescent lamps - performance requirements

Designations for VS converters

Designations for electronic converters are first listed by the name of the product family, which in each case reflects the visible product properties. The type designation should be read as follows:

EST	60	$/ 12$.388
Electronic safety transformer	Max. wattage	Lamp voltage	Serial number

Mechanical mounting

Mounting positionAny

Clearance Min. of 0.1 m from walls, ceilings, insulation; min. of 0.1 m from other electronic converters; min. of 0.25 m from sources of heat (lamp)

Surface Solid; device must not be allowed to sink into insulation materials

Mounting location
In dry rooms or in luminaires, cases, casings or similar in the instance of built-in converters

Fastening Independent converters: using screws, $\varnothing 4 \mathrm{~mm}$

Heat transfer If the electronic converter is destined for installation in a luminaire, sufficient heat transfer must be ensured between the converter and the luminaire casing. During operation, the t_{c} point must not exceed the specified value.

Technical specifications

Type		Operating voltage range AC	Dimmability		Temperature protection	Throughwiring 3	Type of automatic cut-out and number of possible VS devices			
		Unsuitable for DC operation	Phasecutting trailing edge ${ }^{1}$	Phaseculting leading edge	Electronic control ${ }^{2}$	Converter quantity	B (10A)	B (16A)	C (10A)	C (16A)
LiteLine	EST 70/12.380	230-240	x	\times	\times	-	28	45	28	45
	EST 105/12.381	230-240	x	\times	x	-	20	32	20	32
	EST 150/12.622	230-240	\times	\times	X	-	14	23	14	23
\ldots...Mini	EST 60/12.635	220-240	x	\times	X	-	35	56	35	56

1 The dimmer is connected to the primary side between mains and converter.
It is possible to connect several converters to one dimmer (whereby the dimmer's minimum and maximum load must be observed).
The dimmer-converter system should be subjected to function and noise development tests prior to installation.
2 The rating is decreased electronically in the event of overheating.
3 Distributed secondary leads are only permitted on non-metallic surfaces (RFI suppression)

Properties of electronic converters

Overheating Protection against overheating is provided by an electronic controller (see table above).

Short-circuit The converter will be electronically disconnected in the event of a short-circuit at the output; once the short-circuit has been eliminated, the converter will switch on again automatically.

Overload Minor overloads (<50\%) will trigger the temperature switch against overheating; major overloads (>50\%) will trigger the same reaction as for short-circuit.

Should any of the above-mentioned safety functions be triggered, disconnect the converter from the power supply, then find and eliminate the cause of the problem.

Protection against transient mains peaks
Values compliant with EN 61547 (immunity)

Electrical installation

Conductors	Primary conductor cross-section: min. $0.75 \mathrm{~mm}^{2}$ Secondary conductor cross-section: min. $0,75 \mathrm{~mm}^{2}$ for 50 W output and $\min .1 \mathrm{~mm}^{2}$ for 100 W output	
Stripping		
Converter	EST 60/12.635	EST 70/12.380, EST 105/12.381, EST 150/12.622
Type of lead	All usual types of lead up to $4 \mathrm{~mm}^{2}$	H03-VVH2-F 2XO,75 / H05-VVH2-F 2X0,75 / H03-WV-F 2X0,75 / H05-VV-F 2XO,75
Lead preparation		

Connections Screw terminals: max. initial torque of 0.4 Nm must not be exceeded
Secondary length
Min. 0.25 m (clearance to lamp), max. 2 m (RFI protection)

Secondary wiring
Min. 0.1 m clearance from the mains (RFI protection)

Star wiring Twist single-wire or lead wires narrowly; silicone-insulated leads are recommended
Parallel connection
Secondary-side parallel connection is inadmissible

Technical Details - Components for Incandescent Lamps

Feed-through of the mains voltage

See table on page 210
Distributed secondary leads are only permitted on non-metallic surfaces (RFI suppression)

Selection of automatic cut-outs for VS converters

Dimensioning automatic cut-outs
High transient mains current pulses occur when a converter is switched on because the capacitor has to load. As the lamps ignite almost simultaneously, this also creates a high power drain. The high currents that occur when the system is switched on put a strain on the automatic conductor cut-outs, which must be selected and dimensioned to suit.

Release reaction Release reaction of automatic cut-outs in accordance with VDE 0641, Part 11; for B and C characteristics. The values provided in the table on page 210 are meant as guidelines only and may vary depending on the respective lighting system.

No. of converters The maximum number of VS converters (see table on page 210) applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible ballasts must be reduced by 20% for multi-pole fuses. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m [2.5 mm²] of conductor from the power supply to the distributor and a further 15 m to the luminaire).

Dimmability of electronic converters

Dimmed operation
VS converters can be operated with phase-cutting trailing-edge and leading-edge dimmers. The dimmer is connected to the primary side between mains and converter. It is possible to connect several converters to one dimmer (whereby the dimmer's minimum and maximum load must be observed). The dimmer-converter system should be subjected tofunction and noise development tests prior to installation.

Electromagnetic compatibility (EMC)

Mains Harmonics
Maximum values are observed in accordance with EN 61000-3-2.

Interference The requirements of EN 55015 must be met for luminaires with converters for operating low-voltage halogen lamps.
Vossloh-Schwabe converters are designed and manufactured to ensure these requirements are satisfied provided the installation instructions regarding the interference voltage at the connection terminals and electromagnetic interference fields up to 300 MHz are observed.

\qquad

Technical Details - Components for Incandescent Lamps

Additional information

Wiring To ensure good radio interference suppression and the greatest possible operating safety, the following points should be observed when installing electronic converters:

- Conductors between the EST and the lamp (HF conductors) must be kept short (reduction of electromagnetic interference).
- Mains and lamp conductors must be kept separate and if possible should not be laid in parallel to one another. The distance between HF conductors and mains conductors should be as large as possible, ideally $>5 \mathrm{~cm}$. (This prevents the induction of interference between the mains and lamp conductors).
- The mains conductor within the luminaire must be kept short (to reduce the induction of interference).
- The mains conductor must not be laid too close to the EST (this is especially important in the event of through-wiring).
- Mains and lamp conductors must not be crossed. Should this be impossible to avoid, conductors should be crossed at right angles to one another (to avoid inducing interference between mains and HF conductors).
- Should conductors be wired through metal parts, such conductors must always be additionally shielded (e.g. with an insulating sleeve or grommet).

Temperature Reference point temperature tc
The safe operation of electronic converters is dependent on the maximum permissible temperature not being exceeded at the measuring point. Vossloh-Schwabe has determined a casing temperature measuring point - t_{c} max. - on all converter casings. To avoid shortening the service life or diminishing operating safety, the stipulated maximum temperature must not be exceeded at this tc point. This point is determined by testing the converter during normal, IEC-standardised operation at the specified ambient temperature (t_{a}), which is also indicated on the type plate. As both the design-related ambient temperature and the converter's inherent heat, as determined by the installed load, are subject to great variation, the casing temperature should be tested at the t_{c} point under real installation conditions.

Ambient temperature t_{a}
The ambient temperature - as specified on every converter - denotes the permissible temperature range within the luminaire or at the place of installation.

Reliability Service life of 50,000 hrs at reference point temperature t_{c}, whereby a switching cycle of 165 minutes on and 15 minutes off is assumed. Failure rate: $\leq 0.2 \% / 1,000$ hrs
In order to achieve the average service life, the maximum temperature ($\mathbf{t}_{\mathbf{c} \text { max. }}$) must not be exceeded at the $\mathbf{t}_{\mathbf{c}}$ point.

Emergency lighting
VS electronic converters cannot be used for emergency lighting purposes as they are unsuitable for DC voltage operation.

Conductors for low-voltage halogen installations

Conductors for installations with low-voltage halogen lamps

As the high temperatures associated with the operation of low-voltage halogen lamps place severe demands on lampholder conductors, a skilful combination of conductor and insulation is essential. Tin-plated copper conductors with silicone insulation are recommended for temperatures of up to $180^{\circ} \mathrm{C}$ at the cable's conductor; nickel-plated copper cables with polytetrafluoroethylene (PTFE) sheathing are recommended for temperatures of up to $250^{\circ} \mathrm{C}$. Welded connections ensure the most effective heat discharge. Control measurements should be carried out if other connection types are used, e.g. crimping or plug connectors. To prevent the risk of additional heat generation, the maximum permissible current load must be observed when dimensioning the conductor cross-section. When using electromagnetic transformers, the conductor resistance causes a relatively large voltage drop. This drop in voltage is always associated with a reduction of luminous flux. For instance, an 11% drop in voltage will lead to a 30% drop in luminous flux. For this reason, care should be taken to ensure secondary conductors are kept as short as possible and conductor cross-sections are adequately dimensioned when wiring luminaires. Nevertheless, transformers should not be mounted too near the light source ($>25 \mathrm{~cm}$ clearance if possible) to prevent the heat generated by the lamp from raising the ambient temperature above the critical level for a transformer.

As electronic converters operate at high frequencies, consideration must be taken of the skin effect, i.e. the displacement of the electrons from the middle of the conductor to its surface. As a result, the full cross-section of the conductor is no longer used, resistance increases and thus leads to a greater drop in voltage. In addition, AC resistance, which is caused by feed line inductance, can result in an even greater voltage drop. It is therefore recommended that lamp conductors be laid closely parallel or twisted together.

Voltage losses (V) with a two-metre secondary conductor

Working frequency	Load	Cross-section/Voltage drop		
	W	$0.75 \mathrm{~mm}^{2}$	$1 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$
50 Hz (electromagnetic transformers)	50	$0,38 \mathrm{~V}$	0.29 V	0.2 V
any wiring layout	100	0.74 V	0.56 V	0.39 V
40 kHz (electronic converters)	50	1.4 V	1.25 V	1.2 V
any wiring layout (loops)	100	3.3 V	3.1 V	3 V
40 kHz (electronic converters)	50	0.5 V	0.45 V	0.35 V
wires twisted together or closely parallel	100	1.2 V	1 V	0.85 V

Conductors for installations with halogen lamps

All conductors must be selected to suit the luminaire conditions (see table) in terms of material, crosssection and insulation. Testing these conductors under worst case conditions is essential as the commonly occurring high temperatures considerably reduce the conductivity of the conductor and hence its currentcarrying capacity.

Insulation	Conductor Material	Cross-section mm^{2}	Mains voltage V	Max. temperature ${ }^{\circ} \mathrm{C}$
SI	Cu tin-plated (Cu vz)	0.75	300	180
FEP	Cu tin-plated (Cu vz)	0.75	300	180
PTFE	Cu nickel-plated (Cu vn)	0.75	500	250
PTFE	Cu nickel-plated (Cu vn)	1	500	250
PTFE	Ni	1	500	250
PTFE	Ni	1.5	500	250

Conductor Contacts

Pin contact Ø 1

Socket connector

Flat connector 6.3x0.8

Cable with ferrules

Cable, notched at 6 mm

Cable, bared at 6 mm

Ultrasonically welded cable end

Technical Details - Components for Incandescent Lamps

Lampholders

For low-voltage halogen lamps

With the exception of B15d bases, the low-voltage sector is dominated by pin bases, which are fitted with a variety of different pin distances and diameters.

Apart from classic lampholders that ensure both the electrical contact and the correct positioning of the lamp, connection elements are also available. These components are solely responsible for establishing electrical contact and are used in cases where, for instance, the regulations demand that the lamp be attached to its reflector (e.g. cold-light reflector lamps with GZ4 and GX5.3 bases).

Extremely high temperatures are also generated when operating low-voltage halogen lamps as a result of the tungsten-halogen cycle and high lamp currents. In addition, the respective luminaires are often of very compact design, which leads to heat accumulation and thus to high internal temperatures. The materials the lampholder is made of thus play a vital role for the luminaire's operating safety and the lamp's service life. In addition to tried-and-tested materials - ceramics for casings and mica for covers - ever more frequent use is being made of highly heat-resistant plastics like LCP (liquid crystal polymer for e.g. G4, GU4, GX5.3, GU5.3 and GY6. 35 lampholders) and PPS (polyphenylene sulphide for G4 lampholders). Plastic lampholders provide clear advantages: narrow dimensional tolerances, no material fractures, low weight and clip-attachment options.

The type of contact also plays an important role. Conventional contacts are only attached to one side of the lamp pin. In contrast, additional contact points - known as multipoint contacts - lead to a reduction of current density at the point of transition from the lamp pins to the lampholder contact and with that to a decrease in temperature. These contacts provide the further advantage of ensuring superior heat dissipation from the lamp pins to the conductor. The temperature advantage of multipoint contacts in defined conditions (including welded-on conductors) can amount to as much as $100^{\circ} \mathrm{C}$. In extremely rare cases, due to the high internal pressure in the bulb, it is possible for the lamp to shatter. For reasons of fire prevention (high temperature of the glass bulb), the lamp's components must be prevented from falling out. Enclosed luminaires meet these requirements. Open luminaires, however, may only be operated using lamps with enclosed bulbs or low-pressure lamps. Lamps of this kind are suitably marked with pictograms on the lamp's packaging and in the lamp manufacturer's documentation. Lamps marked with pictogram No. 1 are suitable for use with open luminaires, whereas those marked with pictogram No. 2 may only be used in enclosed luminaires.

Lampholders for low-voltage halogen lamps are equipped with mounted cables or with plug-type connectors. In addition to the various lampholders contained in the catalogue, further lampholder models with various cable lengths and of various qualities as well as lampholders with plug-connected cables can be made available on request.

Bases of the most widely used low-voltage halogen lamps

VS lampholders for the UL market and UL approved leads are available for all common lamp types.

Further information can be found at www.unvlt.com/products/ legacy/lampholders.

Technical Details - Components for Incandescent Lamps

Lampholders for mains voltage halogen lamps

A major factor in lampholder design is the lamp temperature, which is determined by the tungstenhalogen cycle, high lamp current and high wattages. Lampholder casings can be made of ceramics, metal or the ever more popular highly heat-resistant thermoplastics like PET (polyethyleneterephthalate), PPS (polyphenylene sulphide) and LCP (liquid crystal polymer). The most suitable contact materials for these temperatures are nickel, copper-nickel alloys or copper materials with sufficiently thick nickel coatings. For tubular lamps (R7s base), the standard IEC 60061-2 7005-53 prescribes the respective contact pressure of lampholder contact materials.

Although halogen lamps offer twice the service life of general-purpose light bulbs, this can only be fully realised if luminaire manufacturers observe the recommended maximum temperatures at the lamp's pinch point. There is usually a welded-on molybdenum plate at the pinch point where the lamp base pins join the lamp filament. Lamp manufacturers ascertain the pinch temperature at this point, which is generally located within the lamp's quartz glass, using specially prepared measuring lamps. The pinch temperature is a critical thermal reference point which must not be exceeded within the luminaire.

VS lampholders for the UL market and UL approved leads are available for all common lamp types.

Further information can be found at www.unvlt.com/products/ legacy/lampholders.

The bases of the most widely used mains voltage incandescent lamps

Retrofit Lamps

So-called retrofit lamps have been introduced to the market thanks to LED technology. Some of these can significantly exceed the weight of the original lamp.

When using such lamps in luminaires already introduced to the market (with conventional lampholders), but also for new luminaire designs (with conventional lampholders), this can cause a greater risk with regard to disconnecting the power supply and, in addition, can lead to greater mechanical damage.

6-80 W EMERGENCY LIGHTING MODULES

EMERGENCY LIGHTING

Emergency lighting systems spring to life any time normal artificial lighting systems fail. Emergency lighting is designed to ensure that work can continue without risk, that staff can safely leave any workplaces involving special hazards and that there is sufficient lighting to illuminate rescue paths/routes as well as to avoid panic situations.

As power cuts result in a risk to safety, legislation has been enacted in the form of the Health and Safety at Work Directive (Europe) and the Health and Safety at Work Acts of the individual European countries (e.g. Germany), all of which stipulate that emergency lighting must be provided. The requirements placed on emergency lighting installed in places of public assembly and public buildings are governed by supplementary directives and laws.

Vossloh-Schwabe's emergency lighting units are designed for use with $T 5, T 8$ and compact fluorescent lamps and can be operated with electromagnetic or electronic ballasts.

VS emergency lighting units are suitable for both continuous and standby circuits with a nominal operating period of 1 or 3 hours.

6 Emergency Lighting Modules for TC and T Lamps

Emergency lighting modules with self-diagnosis function
218-219
Technical details for emergency lighting modules $\quad \mathbf{2 2 0 - 2 2 6}$
General technical details
228-236
Glossary
237-239

Emergency Lighting Modules 6 to 80 W with Self-Diagnosis Function

EMXs - Emergency lighting modules
For one-, two-, three- or four-lamp operation with standard and dimmable electronic or magnetic ballasts
EB phase is switched off during emergency
operation
Short circuit protection
RoHS-compliant (excluding rechargeable batteries) 5-pin technology and therefore EMC-compliant even during emergency operation
Suitable for protection class I
EN 61347-1, EN 61347-2-7
Suitable for systems in accordance with VDE 0108 or EN 50172
Not suitable for lamps with an integrated
starter
Dimensions ($L \times W \times H$): $210 \times 31.4 \times 21.5 \mathrm{~mm}$
Fixing hole distance: 205.5 mm
Nominal voltage: $230 \mathrm{~V} \pm 10 \%, 50-60 \mathrm{~Hz}$
Ambient temperature ta: 0 to $50^{\circ} \mathrm{C}$
Unit: 25 pcs.
These VS emergency lighting modules include an automatic self-diagnosis feature that performs a two-minute function test of the device, the lamp and the battery every seven days.
In addition, the operating period is tested every
12 months with subsequent battery reactivation.

Optical status display

- Red LED, flashing intermittently: defective lamp. The status display will be reset approx. one minute after the fault has been rectified.
- White LED, not illuminated:
if connected to the power supply, the LED must turn green after a maximum of five minutes. If not, the device either has no voltage supply or the emergency lighting module is defective.
- Red LED, permanently flashing: battery capacity is too low or the battery supply line has been interrupted.
- Green LED: fully functional.

Emergency lighting module

LED

Emergency Lighting Modules 6 to 80 W with Self-Diagnosis Function

EMXs - Emergency lighting modules
$\left.\begin{array}{l|l|l|l|l|l|l|l|l}\hline \text { Type } & \begin{array}{l}\text { Ref. No. } \\ \text { Module }\end{array} & \begin{array}{l}\text { Ref. No. } \\ \text { Battery }\end{array} & \begin{array}{l}\text { Nominal operating } \\ \text { period } \\ \text { hrs. }\end{array} & \begin{array}{l}\text { Rechargeable } \\ \text { battery type }\end{array} & \begin{array}{l}\text { Dimensions LxD (} \varnothing) \\ \text { of battery } \\ \mathrm{mm}\end{array} & \begin{array}{l}\text { Test function }\end{array} & \begin{array}{l}\text { Weight } \\ \text { module } \\ \mathrm{g}\end{array} \\ \text { battery } \\ \mathrm{g}\end{array}\right)$

Circuit diagrams see page 224-226

Holders for Rechargeable Batteries for Emergency Lighting Modules

Material: PC (188828: PBT)
Type: Rechargeable Battery Holder

Ref. No.	For rechargeable battery type	Dimensions (mm)					
		a	b	c	d	e	f
188827	4.8V 1.8Ah NiCd	35.0	18.0	26.3	26.7	13.0	5.5
188828	4.8 V 4.5 Ah NiCd	39.0	23.2	36.2	37.3	12.4	6.0
188829	4.8 V 1.8 Ah NiMH	22.5	15.0	22.8	22.5	8.0	4.0
188829	4.8 V 4.5 Ah NiMH	22.5	15.0	22.8	22.5	8.0	4.0

to ensure optimum hold.

Table of suitable lamp types

Lamp type	Lamp nominal output W
T8	$15,18,32,36,58,70$
T5 HE	$14,21,28,35$
T5 HO	$24,39,49,54,80$
T5	$6,8,13$
T-R5 (T-R 16)	$22,40,55,60$
T-R (T29-R)	$22,32,40$
TC-L/TC-F	$18,24,36,40,55,80$
TC-DEL	$10,13,18,26$
TC-TEL	$13,18,26,32,42,57,70$
TC-SEL	$7,9,11$
TC-DD (2D)	$10,16,21,28,38,55$

Luminous flux factor of lamps during emergency operation

Lamp nominal output W	Luminous flux factor* $\%$
6	43.0
8	32.0
18	13.0
28	9.0
32	7.0
35	7.0
36	7.0
49	4.7
54	4.3
55	4.7
58	5.2
70	4.3
80	3.7

[^26]
Assembly instructions for emergency lighting modules

Electrical installation
Emergency lighting module display 223
Circuit diagrams
224-226
General technical details
Glossary 237-239

Emergency lighting modules are designed for operation with 6 to 80 W, 4-pin fluorescent lamps. Luminaires with integrated emergency lighting modules can be operated using a continuous or standby circuit.

Technical specifications	EMXs emergency lighting modules
Permissible mains voltage	$230 \mathrm{~V} \pm 10 \%$
Permissible mains frequency	$50-60 \mathrm{~Hz}$
Power consumption with standby circuit	3 W
Nominal period of operation	1 to 3 hours, depending on the type of rechargeable battery
Batteries	NiCd^{*} to $50^{\circ} \mathrm{C}$
Ambient temperature	24 hrs.
Charging time	1
Protection class	IP20
Degree of protection	CENELEC
Certification	EN $61347-2-7$
Tested in accordance with	Metal (zinc-plated)
Suitable for systems compliant with	Permissible lead length between the emergency lighting module and the lamp must not exceed two metres.
Casing	See the table on page 219, values apply to $25{ }^{\circ} \mathrm{C}$ ambient temperature.
Installation outside the luminaire	
Luminous flux factors during emergency operation	
* Ignition in progress; the values of the colour rendering index and the luminous flux factor may deviate.	

Assembly Instructions for Emergency Lighting Modules

For mounting and installing of emergency lighting modules

If the emergency lighting module is integrated in the luminaire, the LED and battery have to be wired separately, i.e. not in parallel with the mains or lamp. Emergency lighting modules must be fixed in a suitable spot within the luminaire (4-mm bore holes for mounting).
In the interest of maximising battery capacity and service life, care must be taken to ensure the battery is positioned at the coolest part of the luminaire. The ambient temperature of the battery must not exceed $50^{\circ} \mathrm{C}$. Emergency lighting modules must not be mounted on surfaces that ignite, melt or undergo some other thermal change at a temperature of $60^{\circ} \mathrm{C}$. Moreover, emergency lighting modules must not be operated in explosionendangered enclosed spaces.

Electrical installation

The respective ordinances and standards valid at the place of operation must be observed for installation purposes. Emergency lighting modules and luminaires must only be installed by trained staff. Operating voltages exceed 50 V . Caution: potentially fatal hazard!

Prior to first operation of emergency luminaires, all covers must be attached. Furthermore, care must be taken to ensure that the supply voltage complies with the specifications on the type plate and the protective conductor is connected.

1. Fuse
2. Light switch
3. Room lighting
4. Emergency luminaires

Emergency luminaires must be connected to a direct phase to enable mains monitoring and ensure constant charge retention. This phase must be connected to the group fuse of the regular room luminaire. Emergency luminaires are generally delivered with uncharged batteries and must be connected to the mains for at least 48 hours to be fully functional or for approx. 10 minutes for mains operation in the case of a continuous circuit.

Additional information for optimising EMC

Information on the installation of electronic ballasts for optimising EMC
To ensure good radio interference suppression and the greatest possible operating safety, the following points should be observed when installing electronic ballasts:

- Conductors between the EB and the lamp (HF conductors) must be kept short (reduction of electromagnetic interference). High-potential lamp conductors must be kept as short as possible, in particular with tubular lamps. Lamp conductors of this kind are labelled with an * in the wiring diagram on the type plate.
- Mains and lamp conductors must be kept separate and if possible should not be laid in parallel to one another. The distance between HF and mains conductors should be as large as possible, ideally $>5 \mathrm{~cm}$. (This prevents the induction of interference between the mains and lamp conductors.)
- The mains conductor within the luminaire must be kept short to reduce the induction of interference).
- Devices must be properly earthed. EBs require secure contacts to the luminaire casing or must be earthed using a PE connection. This PE connection should be effected using an independent conductor to achieve better dissipation of the leak current. EMC improves at frequencies greater than 30 MHz .
- The mains conductor must not be laid too close to the EB or the lamp (this is especially important in the event of through-wiring).
- Mains and lamp conductors must not be crossed. Should this be impossible to avoid, conductors should be crossed at right angles to one another to avoid inducing interference between mains and HF conductors.
- Should conductors be wired through metal parts, such conductors must always be additionally shielded (e.g. with an insulating sleeve or grommet).

Maintenance With regard to system maintenance and control, care must be taken to ensure compliance with any ordinances and standards governing emergency lighting at the place of installation. Prior to opening lamp covers, the following procedure must be observed:

1. Disconnect luminaires from the mains voltage.
2. Remove cover.
3. Disconnect battery from the emergency lighting module (disconnect the plug). VS recommends connecting control LEDs to be visible on the outside of emergency luminaires to enable simple and regular control of emergency luminaires and emergency lighting modules.

Changing batteries

Batteries need to be replaced if the operating period of luminaires falls short of 60 minutes in the case of 1 -hour operation and 180 minutes for 3 -hour operation, respectively. Emergency lighting modules have a status display for this purpose.
Spent batteries must be replaced with the manufacturer's original batteries only. Furthermore, the polarity of the batteries must be strictly observed. The battery supply lines of the emergency lighting module are marked as follows:

```
red = +; black = -
```


Technical Details - Emergency Lighting Modules for TC and T Lamps

Emergency lighting module display

Normal operation is indicated by a green LED. During emergency operation or for as long as the battery remains fully discharged, the LED is off (i.e. does not glow). The LED will flash red if the battery is missing or not properly connected.

Automatic test of emergency lighting modules

In the case of emergency luminaires with emergency lighting modules, the operational readiness of the device, the lamp and the battery is tested automatically every seven days. In addition, battery capacity is measured during a simulated loss of mains power every 12 months.
The first capacity test will be carried out seven days following initial installation or any repair work. The LED must be checked after the first self-test. A green LED indicates all is in working order, any other display indicates a problem.
The device features a two-colour LED display to indicate that the emergency luminaire is ready for use.

Optical status display

Notes

Caution!

 sin fallos / nessu difetto and civil law.Emergency luminaires merely require regular visual inspection of the status display (LED) and the luminaire itself.

Red LED, flashing intermittently	During initial operation, a lamp recognition test is first carried out. Prior to and during this test, the LED will be red and flash intermittently.
White LED, not illuminated	If connected to mains power, the LED must turn green after a maximum of five minutes. If not, the device has no mains voltage or the emergency lighting module is defective.
Red LED, continuous flashing	Battery capacity is too low or the battery supply line has been interrupted. The warning light will go off again as soon as the problem has been rectified.
Green LED	Fully functional.

keine Störung / no fault / pas de défaut similarly, Vossloh-Schwabe accepts no liability for third-party claims arising from putting a device to any improper use, i.e. any use not expressly permitted by VS. Emergency lighting modules must not be opened or modified in any way. The components of emergency lighting modules must be replaced with original parts only.

Should emergency lighting modules be damaged in a way that suggests it cannot be operated safely, the luminaires or emergency lighting modules, respectively, must not be operated. VS reserves the right to make changes to diagrams, weights, tables of dimensions or other such details included in the catalogue or instructions for use without prior notice if such changes prove to be necessary or are made as a result of technological progress. VS emergency lighting modules are patent protected.

Any act of producing counterfeit VS products will be prosecuted according to criminal Emergency lighting modules from VS must not be operated with amalgam lamps.

Circuit Diagrams

For VS emergency lighting modules

Notes for wiring:

- The distance between mains lead and lead 8 should be as large as possible
- Leads 2/4/6/8 must be kept short

Circuit diagrams - 1-lamp operation

1-lamp operation
without electronic or electromagnetic
ballast (continuous circuits)

1-lamp operation - Warm start
with electronic ballast ELXs

1-lamp operation
with electromagnetic ballast

1-lamp operation - Dimming / Warm start with electronic ballast ELXd / ELXc

1-lamp operation - Instant start
with electronic ballast ELXe

Technical Details - Emergency Lighting Modules for TC and T Lamps

Circuit diagrams - 2-lamp operation

2-lamp operation
with electromagnetic ballast

2-lamp operation - Dimming / Warm start with electronic ballast ELXd / ELXc

2-lamp operation - Dimming
with electronic ballast ELXd

Circuit diagrams - 3-lamp operation

3-lamp operation - Warm start with electronic ballast ELXc

2-lamp operation - Warm start with electronic ballast ELXc

2-lamp operation - Dimming with electronic ballast ELXd

2-lamp operation - Instant start with electronic ballast ELXe

3-lamp operation - Warm start
with electronic ballast ELXc

Technical Details - Emergency Lighting Modules for TC and T Lamps

Circuit diagrams - 3-lamp operation

3-lamp operation - Dimming
with electronic ballast ELXd

Circuit diagrams - 4-lamp operation

4-lamp operation - Warm start with electronic ballast ELXc

4-lamp operation - Instant start
with electronic ballast ELXe

3-lamp operation - Instant start
with electronic ballast ELXe

4-lamp operation - Dimming with electronic ballast ELXd

7
 General Technical Details

General technical details229-236
Product development and product cerrification 229-230
CE mark 230
Climate and environmental protection 232
Protection classes of luminaires and operating devices 233
Operating devices with double or reinforced insulation for installation in protection class II luminaires 233-234
Protection classes of luminaires and operating devices 235
Selection of components, materials and dimensions 236
Impulse voltage categories for lampholders 236
Torque to be applied to screws 236
Glossary237-239

General Technical Details

Product development and product certification

The increasingly converging world and the global markets that are being created are both placing new design demands on the sector and its technologies. Against this background, standardisation - both on a regional and international scale - is becoming more and more important in positioning new technologies and innovations on the market. Standardisation ensures the necessary degree of safety, reliability, exchangeability and cost-effectiveness.

Vossloh-Schwabe products have been developed and produced on the basis of technical innovations, internationally and regionally applicable standards and valid environmental regulations for more than 90 years. In this respect, we already take account of integrated components and materials, production methods and technologies, comprehensive environmental aspects as well as a product's energy efficiency during the development phase. An important entrepreneurial goal in all these years has been and continues to be to create lighting components that satisfy the requirements of our customers with regard to safety, function, longevity and cost-effectiveness.

In addition to observing valid, state-of-the-art standards, we also take consideration of the recommendations of industrial associations when developing new products.

Our cooperation in national and international committees ensures we receive early information about new or changed regulations and thus helps to guarantee future-orientated products.

In addition to undergoing internal production approval tests, mass-produced devices are also submitted to national and international testing institutes for certification. The applicable testing and assessment regulations of the testing institutes are subject to international variation. The marks of conformity shown here are therefore not valid for all the products featured in the catalogue. You will find an overview of the approval marks for the products presented in the catalogue from page 240 on. On request, we will gladly provide information about all of the existing approvals.

As the international IEC (International Electrotechnical Commission) standards for lighting technology are also adopted by the European Institute for Standardisation CENELEC (Comité Européen de Normalisation Electrotechnique), the European standards (EN) therefore contain the same requirements. In rare cases, national deviations are permitted. The certification (third-party testing) of VS catalogue products in accordance with EN standards is documented by the ENEC mark.

The ENEC mark (European Norms of Electrical Certification) was created in Europe as a uniform certification mark for electrotechnical products. The ENEC Agreement currently governs the following product groups:

- luminaires
- luminaire components
- energy-saving lamps
- IT equipment
- connection terminals, clips
- capacitors
- couplers
- switches for household appliances
- safety transformers
- tools
- consumer electronic
- batteries
- domestic appliance mobile tools
- IT products
- noise filters
- 1 product

[^27]The certification of products is also expanded to include non-European manufacturers. However, cerrification testing for lighting equipment must be carried out by an ENEC testing institute in Europe.

At present, a total of 25 testing houses in 22 countries are signatories of the ENEC agreement (see table). Obtaining an ENEC mark for luminaire components like ballasts and ignitors also includes having the product assessed in accordance with the standards governing safety and function. Certification must be based on the EN standards listed in the Agreement.The mark documents that the product not only complies with the applicable standards, but also that ongoing production is monitored by inspectors from a testing institute and that the manufacturer operates an effective quality assurance system in accordance with the ISO 9000 standard suite (International Standards Organisation). ISO deals with the standardisation of non-electrotechnical products.

The ENEC mark is displayed with the identification number and often the logo of the testing institute, as follows:

Identification No.	Testing Institute	Identification No.	Testing Institute
01	AENOR - Spain	16	SGS Fimko - Finland
02	SGS - Belgium	17	NEMKO - Norway
03	IMQ - Italy	18	TRI MEEI - Hungary
04	CERTIF - Portugal	19	ITCL - United Kingdom
05	DEKRA - Netherlands	21	EZÚ - Czech Republic
08	LCIE - France	22	SIQ - Slovenia
09	MIR-TEC - Greece	23	TSE - Turkey
10	VDE - Germany	24	TRLPTÜV - Germany
11	ÖVE - Austria	25	TÜV SÜD PS - Germany
12	BSI - United Kingdom	28	SEP - BBJ - Poland
13	Electrosuisse - Switzerland	30	PREDOM - OBR - Poland
14	Intertek SEMKO - Sweden		EVPU - Slovakia
15	UL Int'I DEMKO - Denmark		

Apart from a product's safety and performance certification, a further useful selection aid is to have a product's electromagnetic compatibility (EMC) tested by an independent test institute, particularly in the case of electronic ballasts. If the product passes the EMC test, an additional test mark is awarded, for instance the VDE EMC mark of the VDE test and certification institute in Offenbach. The EMC certifications for control gears are helpful for the EMC luminaire cerrification and could reduce time and cost for the luminaire certification.

CE mark

EC Directives form the basis for a common European domestic market without any trade restrictions. Any products that are destined for the European market have to meet the requirements of all directives that apply to the product in question. Compliance with the directives is documented by the CE mark on the product or in the technical documents.

This CE mark is therefore not a mark of compliance with standards (test certificate) of a testing institute, like the ENEC mark is, and can therefore not be issued by a testing institute. The CE mark must be printed on the product, the packaging or both and is not directed at the consumer, but at supervisory authorities.

General Technical Details

The following table contains a list of key EC Directives governing lighting

2019/2020/EC	Regulation setting ecodesign requirements for light sources and separate operating gears pursuant to Directive 2009/125/EC of the European Parliament and of the Council and repealing Commission Regulations (EC) No 244/2009, (EC) No 245/2009 and (EU) No 1194/2012
2019/2015/EC	Delegated Regulation supplementing Regulation (EU) 2017/1369 of the European Parliament and of the Council with regard to energy labelling of light sources and repealing Commission Delegated Regulation (EC) No 874/2012
2017/1369/EC	Regulation establishing a framework for energy labelling and repealing Directive 2010/30/EC
2015/1428/EC	Directive dated 25 August 2015 that amends Directive (EC) No. 244/2009 of the Commission with regard to laying down requirements for the eco-friendly design of households lamps with unbundled light and Directive (EC) No. 245/2009 of the Commission with regard to laying down requirements for the eco-friendly design of fluorescent lamps without a built-in ballast, high-pressure discharge lamps as well as ballasts and luminaires for their operation and for annulling Directive 2000/55/EC of the European Parliament and the Committee and Directive (EU) No. 1194/2012 of the Commission with regard to the eco-friendly design of lamps with bundled light, LED lamps and associated devices.
2015/863/EC	Commission Delegated Directive (Eu) 2015/863 of 31 March 2015 amending Annex II to Directive 2011/65/EU of the European Parliament and of the Council as regards the list of restricted substances
2014/53/EC	Requirements for radio equipment (luminaires with built-in transmitters) dated 16 April 2014 governing the harmonisation of legal regulations on retailing radio equipment on the market and to render Directive 1999/5/EC invalid.
2014/35/EC	Electrical equipment designed for use within certain voltage limits (low Voltage Directive); valid from 20.04.2016
2014/30/EC	Directive on the harmonisation of the laws of the Member States relating to electromagnetic compatibility; national laws had to take effect by 20.01.2007. Applicable to new products since 20.07.2007. (EMC Directive); valid from 20.04.2016
2012/19/EC	Directive governing the recycling of used electric and electronic devices (WEEE Directive)
2012/27/EC	Energy efficiency directive that amends Directives 2009/125/EC as well as 2010/30/EU and renders Directives 2004/8/EC and 2006/32/EC invalid
874/2012/EC	Energy labelling of electrical lamps and luminaires
2011/65/EC	Restrictions governing the use of certain hazardous substances in electrical and electronic devices. On 3 January 2015, the 2011/65/EU (RoHS 2) Directive superseded the previous 2002/95/EC (RoHS 1) Directive. Both directives are unofficially shortened to RoHS (Restriction of Hazardous Substances).
347/2010/EC	Ecodesign requirements for fluorescent lamps without an integrated ballast, for high intensity discharge lamps, and for ballasts and luminaires able to operate such lamps
2010/31/EC	Directive governing the total energy efficiency of buildings
859/2009/EC	Ecodesign requirements on ultraviolet radiation of non-directional household lamps
2009/125/EC	Setting of ecodesign requirements for energy-related products (ErP). This directive supersedes directive 2005/32/EC. The new directive was extended and now includes all energy-consuming products.
1907/2006/EC	Specifications governing the registration, evaluation, authorisation and description of chemicals: REACH (Registration, Evaluation, Authorisation and Restriction of Chemical Substances) plus amending regulations; e.g. $348 / 2013 / E C$, latest amendment of the REACH regulation
2006/95/EC	Electrical equipment designed for use within certain voltage limits (Low Voltage Directive); valid till 19.04.2016
2006/32/EC	Energy end-use efficiency and energy services - ES Directive (Energy Service); national laws must take effect by 17.05.2008.
2006/25/EC	Directive on the minimum health and safery requirements regarding the exposure of workers arising from physical agents (arrificial optical radiation)
2005/32/EC	Eco-design requirements for energy-using products - EuP directive (Energy using Products).
2005/20/EC	Directive regarding packaging
2004/108/EC	Directive on the approximation of the laws of the Member States relating to electromagnetic compatibility; national laws had to take effect by 20.01 .2007. Applicable to new products since 20.07.2007. (EMC Directive); valid fill 19.04 .2016
2004/40/EC	Directive on the minimum healh and safety requirements regarding the exposure to the risks arising from physical agents (electromagnetic fields)
2004/12/EC	Directive on packaging
2003/66/EC	Directive on energy labelling of household electrical refrigerators, freezers and lamps
2002/96/EC	Old electrical and electronic devices; effective since 13.08.2005; does not fall under the CE mark directive
2002/91/EC	Total energy efficiency of buildings; effective since 04.01.2006; does not fall under the CE mark directive
2001/95/EC	Directive on general product safery
1999/05/EC	Requirements for radio-controlled systems and telecommunications equipment as well as reciprocal acknowledgement of their conformity (R\&TTE = Radio Equipment and Telecommunications Terminal Equipment) dated 9 March 1999. Also applies to luminaires with built-in transmitters
1998/11/EC	Energy rating of household lamps; effective since 14.06.1999
1994/62/EC	Directive on packaging
93/68/EWC	CE marking directive

 Directive regarding packaging
 Directive on the approximation of the laws of the Member States relating to electromagnetic compatibility; national laws had to take effect
 by 20.01.2007. Applicable to new products since 20.07.2007. (EMC Directive); valid till 19.04.2016
 2004/40/EC
Directive on the minimum health and safery requirements regarding the exposure to the risks arising from physical agents (electromagnetic fields)
Directive on packaging
Directive on energy labelling of household electrical refigerators, freezers and lamps
Old electrical and electronic devices; effective since 13.08.2005; does not fall under the CE mark directive
Total energy efficiency of buildings; effective since 04.01.2006; does nof fall under the CE mark directive
Directive on general product safety
R\&TE = Radio Equipment and Telecommunications Terminal Equipment) dated 9 March 1999. Also applies to luminaires with builtin transmitters.
Energy rating of household lamps; effective since 14.06.1999
CE marking directive

Manufacturers are obliged to keep conformity declarations as well as test and production documentation ready for presentation.

The documents must be retained for a period of 10 years after the product was last marketed.

Vossloh-Schwabe operating devices all bear the CE mark; the respective conformity declaration and production documentation are available for inspection. As a consequence, all luminaires that are equipped with properly installed VS components and for which the assembly instructions were observed meet the legal requirements.

Climate and environmental protection

The European Union adopted a number of EU Directives that are designed to reduce the CO_{2} output. Essentially, these objectives can be grouped into three categories:

- requirements placed on new products,
- requirements placed on buildings and
- revision of existing installations.

The requirements placed on new products are governed by the ErP framework directive (Energy$\mathbf{r e l a t e d} \mathbf{P r o d u c t s}$) together with the so-called implementation directives, which envisage the setting of special energy requirements for lamps (minimum Im / W requirements), operating devices (minimum efficiency ratings) and luminaires (minimum energy efficiency requirements) for all lighting technologies. The directive on energy efficiency requirements regarding ballasts for fluorescent lamps is integrated into the implementation directives.

The requirements for buildings (EPBD: Energy Performance of Buildings) are specify targets for the maximum permissible primary output of lighting. In so doing, a calculation method is employed that will stipulate the permissible maximum electrical output values of the lighting system using a reference procedure.

With regard to the revision of existing installations the EU member states are called upon to set up national action plans (Energy Service Directive) that show which measures can be used to achieve the targeted CO_{2} reductions.

In addition to the climate protection requirements, a number of directives were also produced to cover waste reduction and recycling, specifically the WEEE (Waste of Electrical and Electronic Equipment) and
RoHS (Restriction of the use of certain Hazardous Substances) directives. These directives regulate the disposal and reduction of waste and the use of hazardous substances.

As a result of the REACH system (Registration, Evaluation, Authorisation and Restriction of Chemical Substances) only registered chemical substances can now be brought onto the market. The principle is: no data, no market.

As operating devices and lampholders are constituent parts of luminaires, these components are to be disposed of along with the luminaire; separate disposal is not provided for.

Protection classes of luminaires and operating devices

The electric shock protection that luminaires and control gears are fitted with provides dual protection, which prevents any danger in the event of a technical defect. With regard to safety, the simultaneous occurrence of two errors can be taken into account in certain circumstances, e.g. given a street luminaire with two lamp casings, one of which is used to house the ballast that operates the lamp. This also applies to low-voltage LED lighting systems.

Luminaires and operating devices of protection class I provide protection against electrical shock solely using the base insulation and the safe connection of all exposed conductive parts to an earth conductor. Thus, should the base insulation fail, no exposed conductive parts can become live.

Luminaires and operating devices of protection class II provide protection against electrical shock using both the base insulation and an additional or reinforced insulation. Protection class II products do not feature a connection to a protective earth conductor. The mounting conditions do not ensure any additional degree of protection, either.

In special cases with Protection Class II luminaires, it can be permissible to connect a protective conductor or a function protection conductor, as follows:

- for EMC reasons - in such cases, it can be necessary to connect a function protection conductor to remain within EMC limiting values. The component manufacturer's specifications regarding the individual operating devices must be observed during the construction of the luminaire. If an operating device is marked as containing a function protection conductor, the creepage and air clearance distances of the operating device connection must comply with the requirements of protection class II (reinforced or additional insulation);
- as an ignition aid for lamps - connecting a function protection conductor can be necessary as a capacitive ignition aid for lamps. In such cases the creepage and air clearance distances around the ignition aid within the luminaire and the function protection conductor connection terminal have to comply with the requirements of protection class II (reinforced or additional insulation). The ignition behaviour of a lamp should be agreed with the manufacturer in these cases;
- when wiring the protective conductor from the luminaire to another device. This is an installation point of the protective conductor and creepage and air clearances must comply with the respective requirements laid down in the luminaire standard as well as any requirements regarding reinforced or additional insulation.
Functional earth connections of control gear or Protection Class II luminaires must always feature double or reinforced insulation since no technical safety requirements exist for functional earth.

Operating devices with double or reinforced insulation for installation in protection class II luminaires

Protection class II specifications have to be met by the luminaire along with its installed operating device. Both protection class I and class II ballasts can be installed. The design of the luminaire must be adapted to suit. This means that if a protection class | ballast is installed in a protection class II luminaire, the design of the luminaire has to be correspondingly sophisticated to ensure the creepage and air clearance distances can be met. On the other hand, using a protection class II ballast, only available as an independent ballast nowadays, will in most cases result in a need for too much technical effort and thus in high costs. Against this background, the standards contain special requirements for ballasts destined for installation in protection class II luminaires.

These "double or reinforced insulation ballasts" and respective protection class || lampholders permit technically and cost-effective construction of protection class II luminaires.

$\left.{ }^{(}\right)$

Connection terminal for the protective earth conductor Protection class I

Connection of the function protection conductor (will drop in future)

$\stackrel{\perp}{=}$

General symbol for an earth connection

Protection class II

Protection class III luminaires provide protection against electrical shock by using Safety Extra Low Voltage (SELV). Luminaires of protection class III are not permitted to generate higher voltages than the Safety Extra Low Voltage (SELV).

The following table, which has been taken from the luminaire standard EN 60598-1, provides an overview of the insulation coordination between the various types of built-in electronic ballasts and the types of insulation found in luminaires.

Operating gear \quad Necessary insulation between active parts and exposed conductive parts

Insulation between LV supply and the secondary circuit	Output voltage	Protection class I Insulation of exposed, earthed and conductive parts	Protection class II Insulation of an exposed, conductive part or more as one with potential equalisation	Protection class II Insulation of more than one exposed, conductive part without potential equalisation
None	Uout > LVSupply	Basic insulation suitable for Uout	Double or reinforced insulation suitable for Uout	Double or reinforced insulation suitable for Uout
	Uout \leq LVSupply	Basic insulation suitable for Uout	Double or reinforced insulation suitable for Uout	Double or reinforced insulation suitable for LVSupply
Basic	Voltage > ELV	Basic insulation suitable for Uout	Additional insulation suitable for Uout plus LVSupply	Insulation must satisfy the higher requirement of a) or b) a) Additional insulation suitable for Uout plus LV Supply b) Double or reinforced insulation suitable for Uout
	ELV (FELV)	Basic insulation suitable for Uout	Additional insulation suitable for Uout plus LVSupply	Additional insulation suitable for Uout plus LVSupply
Double or reinforced	Voltage > ELV	Basic insulation suitable for Uout	Basic insulation suitable for Uout	Double or reinforced insulation suitable for Uout
	ELV (SELV)	Basic insulation suitable for Uout	Basic insulation suitable for Uout	Basic insulation suitable for UOUT
		also see requirement of IEC 60598-1, sections 8, 10 and 11		

General Technical Details

Protection classes of luminaires and operating devices

IEC 60529 (EN 60529) defines protection classes for enclosures of casings. The IP Code (International Protection Code) describes the level of protection provided against accidental contact and penetration by foreign bodies as well as protection against water. The first number stands for protection against foreign bodies, the second stands for protection against water. These specifications are important with particular regard to built-in or mounted luminaires as the provisions governing protection against accidental contact provide the basis for the insulation system for components and conductors (also see luminaire standard EN 60598-1).

To comply with the IP requirements, the installation instructions supplied by the luminaire and/or operating device manufacturer(s) must be observed.

Number	1 st Number		2nd Number Protection against water
	Protection against contact	Protection against foreign bodies	
0	No protection	No protection	No protection
1	Protected against contact with the back of the hand	Protected against solid foreign bodies $\varnothing \geq 50 \mathrm{~mm}$	Protected against vertically dripping water
2	Protected against finger contact	Protected against solid foreign bodies $\varnothing \geq 12 \mathrm{~mm}$	Protected against diagonally dripping water (angle of 15° from above)
3	Protected against contact with tools	Protected against solid foreign bodies $\varnothing \geq 2.5 \mathrm{~mm}$	Protected against diagonal water spray up to an angle of 60° from above
4	Protected against contact with wire	Protected against solid foreign bodies $\varnothing \geq 1 \mathrm{~mm}$	Protected against water splashes from any direction
5	Protected against contact with wire	Protected against dust	Protected against jets of water
6	Protected against contact with wire	Dust-ight	Protected against strong jets of water
7	-	-	Protected against temporary immersion in water
8	-	-	Protected against permanent submersion in water. Specific testing conditions must be agreed, especially with regard to highpressure cleaning equipment.
9	-	-	For high-pressure cleaning IPx9 in accordance with DIN 4005

If any components like ballasts or conductors of built-in or mounted luminaires (e.g. wall-mounted luminaires) are accessible to accidental contact, they must comply with the requirements of the two safety levels stipulated for these components. Luminaire construction must be in line with these conditions, which can mean that, for instance, conductors have to feature additional or reinforced insulation.

For lampholders the compliance with the two safety levels is proved by conducting a special voltage test.
European standard EN 50102 "Degrees of protection provided by enclosures for electrical equipment against external mechanical impacts (IK code)" introduces an IK code, analogous to the IP degree of protection of electrical control gear, that was also adopted as a national standard in France, e.g. with the French standard NF EN 50102. Testing is carried out using a pendulum hammer that, in accordance with the IK code, must be dropped from a certain height with respective weights attached to exert the specified impact energy. The table details impact energy values for luminaires (IKOO to IK10).

IK Code	Energy Nm or Joule	IK Code	Energy Nm or Joule
IKOO	0.0	IK06	1
IKO1	0.14	1K07	2
IK02	0.2	IK08	5
IK03	0.35	IK09	10
IK04	0.5	IK10	20
IK05	0.7		

Selection of components, materials and dimensions

The documentation provided by Vossloh-Schwabe is carefully researched. Technical advice is given to the best of our knowledge. The details on the product or the type plate are binding in every case.

Any manipulation of VS products or product packaging is illegal and violates registered trademark rights. Manipulations can negatively influence or destroy technical properties and can possibly result in secondary damage. Vossloh-Schwabe does not accept any liability for manipulated products and cannot be held responsible for any secondary damage.

Manufacturers of luminaires and lighting systems remain responsible for the selection of suitable luminaire components, e.g. operating devices and lampholders, and component materials just as for their safe and correct installation in line with luminaire and system set-up regulations.

Particular attention should be paid to the following:

- temperature measurements and temperature limits
- compliance with creepage and air clearance distances and insulation thicknesses
- selection of components to suit their operating conditions and degree of strain
(e.g. voltage, current, mechanical loading, UV radiation)
- protection against contact and safe protective earth conductor connections
- resistance to corrosion

The product drawings without tolerances are contained in this catalogue only feature nominal dimensions. For space and simplicity reasons, the full dimensions and particularly the associated tolerances cannot be shown. For detailed information resp. details of luminaire design, please request our in-depth dimensional assembly drawings.

All VS products comply with the relevant standards and are developed and produced using the latest technological expertise.

To ensure safe luminaire production we do not recommend reusing dismantled lampholders.
Impulse voltage categories for lampholders

Lampholder	Standard	Impulse voltage category
E14: $250 \mathrm{~V} / 2 \mathrm{~A}$	IEC 60238 / VDE 0616-1	2
E27: $250 / 500 \mathrm{~V} / 4 \mathrm{~A}$		2
E40		2
Starters: $250 \mathrm{~V} / 2 \mathrm{~A}$	IEC 60400 / VDE $0616-3$	2
Fluorescent lamps $250 \mathrm{~V} / 500 \mathrm{~V} / 2 \mathrm{~A}$	IEC 60400 / VDE 0616-3	2
Halogen lamps and other lamps	IEC 60838-1 / VDE 0616-5	2
Bayonet fitting	IEC 61184 / VDE 0616-2	2

Torques for screws

With regard to lampholders secured with screws, we recommend using a torque of around 80% of the value stipulated in DIN EN 60598-1

Nominal diameter of the screw's outside thread mm	Torque (Nm) for screws with a head in acc. with DIN EN 60598-1
to 2.8	0.40
<2.8 to 3.0	0.50
<3.0 to 3.2	0.60
<3.2 to 3.5	0.80
<3.6 to 4.1	1.20
<4.1 to 4.7	1.80
<4.7 to 5.3	2.00
<5.3 to 6.0	2.50

A	A type, B type capacitors	The requirements of the safety standard for capacitors differentiates between capacitor types; A type capacitors stand for plastic can capacitors; B type capacitors stand for aluminium can capacitors.
	Analogue interface 1-10 V	Bipolar interface of dimmable operating devices with a built-in constant current source.
	Average service life	Specified service life of electronic operating devices with a failure rate per unit of time.
B	Ballast	Device that is connected in between the voltage supply and one or more discharge lamps and serves the purpose of igniting the lamps and limiting lamp current during operation.
	Ballast-Lumen Factor (luminous flux factor of a ballast)	The ratio of luminous flux emitted by a reference lamp when operated with a particular production ballast to the luminous flux emitted by the same lamp when operated with its reference ballast.
C	Capacitive circuit (series compensation)	Circuit of an inductive ballast with a capacitor connected in series.
	CE Mark	European regulation governing all products that are introduced to the market. Products must comply with the respective EC directives.
	CELMA	Association of European component and luminaire manufacturers (Committee of E.E.C. Luminaires Components Manufacturers Associations).
	CENELEC	European committee for electronic standardisation (Comité Européen de Normalisation Electrotechnique).
	CISPR	International special commission for radio interference (Comité International Spécial des Perturbations Radioélectriques).
	Colour rendering index (CRI) $\mathbf{R a}_{\mathbf{a}}$	Index to determine the degree of deviation from a viewed body colour (with 8 standardised test colours) under a given type of lighting. $R_{a}=100$ denotes a light source that causes no distortion of any colour. Lower R_{a} values denote light sources with less positive colour rendition properties.
	Compensated circuit (parallel compensation)	Circuit of an inductive ballast with a capacitor between phase and neutral conductor.
	Compensation capacitors	The power factor can be increased to a value of 0.9-0.98 by using compensation capacitors.
	Conformity declaration	Documentation for an operating device or a luminaire regarding compliance with European directives; this documentation is for submission to national supervisory authorities (e.g. regulation authority for telecommunications and post (Reg. TP) or trade supervisory authorities).
	Convertors	Electronic convertor (electronic conversion of mains voltage in extra-low voltage) to generate operating voltage for low-voltage halogen lamps.
	Creepage and air clearance distances	Regulation minimum distances between voltage-carrying components of different polarity or between voltage-carrying components and the accessible casing surfaces (air clearance: shortest distance through air; creepage distance: shortest distance across a surface).
	Cross discharge	Discharge in the lamp electrode region during preheating.
D	DALI	Digital interface for controlling dimmable electronic operating devices (Digital Addressable Lighting Interface).
	Δt	Increase in the winding temperature during the operation of a ballast (the ballast is mounted on 75 mm high wooden blocks and its temperature is measured at an ambient temperature of $25^{\circ} \mathrm{C}$).
	$\Delta t_{\text {an }}$	Temperature increase during short-circuit operation (e.g. defective starter, defective lamp).
	DIAL	German institute for applied lighting technology (Deutsches Institut für Angewandte Lichttechnik), Lüdenscheid, Germany.
	DiiA	The Digital Illumination Interface Alliance (DiiA) is an open, global consortium of lighting companies. DiiA aims to grow the market for lighting-control solutions based on digital addressable lighting interface (DALI) technology.
	DKE	German electrotechnical commission of the DIN and VDE.
	Driver	Name commonly given to ballasts used for operating LED modules.
E	EC directives	Regulations (laws) of the European Community that have to be transposed into national laws within a prescribed period of time.
	Efficiency	Ratio of power output in relation to power input.
	ELC	European Lamp Companies Federation
	EMC	Electromagnetic compatibility
	EMF	Electromagnetic fields
	ENEC agreement	Agreement between the European testing institutes for issuing the European test mark.
	ENEC mark	Marking for a device that complies with the European standards and that was tested by a testing institute that is a part of the ENEC agreement (European Norms of Electrical Certification).
	Energy classification EEI	CELMA system to determine energy classes for ballasts for fluorescent lamps (Energy Efficency Index).
	Error current	Current that is caused by a fault in the insulation of a device or via creepage or air clearance distances.
	Error current protection swi	Evaluates the magnitude of the error current and switches the circuit off if a predefined maximum value is reached.
F	Feed-through of mains voltage	The possibility of connecting two lamps to a single terminal so that an electrical connection can be made to another device.
	FELV	Functional extra-low voltage without adequate protection from accidental contact with higher voltages in other parts of the same circuit.
	FEP capacitors	Flame- and explosion-proof capacitors with a contact breaker.
	FGL	Promotion Society for Good Lighting (Fördergemeinschaft Gutes Licht - ZVEI).
	Function protection conductor	It may be necessary to connect a "function protection conductor" to ensure compliance with the EMC requirements or as a starting aid for lamps; VS operating devices are suitably marked.

or submission to national supervisory authorities (e.g. regulation authority for telecommunications and post (Reg. TP) or trade supervisory authorities).
Electronic convertor (electronic conversion of mains voltage in extra-low voltage) to generate operating voltage for low-voltage
Regulation minimum distances between voltage-carrying components of different polarity or between voltage-carrying components and the accessible casing surfaces (air clearance: shortest distance through air; creepage distance: shortest distance across a surface)

Digital interface for controlling dimmable electronic operating devices (Digital Addressable Lighting Interface)
Increase in the winding temperature during the operation of a ballast the ballast is mounted on 75 mm high wooden blocks and its temperature is measured at an ambient temperature of $25^{\circ} \mathrm{C}$)
emperature increase during short-circuit operation (e.g. defective starter, defective lamp).

Tolal

German electrotechnical commission of the DIN and VDE
Name commonly given to ballasts used for operating LED modules
Regulations (laws) of the European Community that have to be transposed into national laws within a prescribed period of time.
input

Electromagnetic compatibility
Electromagneic fields

Marking for a device that complies with the European standards and that was tested by a testing institute that is a part of the ENEC agreement (European Norms of Electrical Certification).
CELMA system to determine energy classes for ballasts for fluorescent lamps (Energy Efficency Index).
Evaluates the magnitude of the error current and switches the circuit off if a predefined maximum value is reached.

Functional extra-low voltage without adequate protection from accidental contact with higher voltages in other parts of the same

Promotion Society for Good Lighting (Fördergemeinschaft Gutes Licht - ZVEI) starting aid for lamps; VS operating devices are suitably marked

I	IDC terminal (ALF terminal)	IDC-type connection terminal (Insulation Displacement Connection) for automatic luminaire fabrication (ALF terminal).
	IEC	International Electrotechnical Commission
	ILCOS Iamp designation system	International IEC marking system for lamps.
	Illuminance Ev	Illuminance (Ev) is the total luminous flux (Φ) incident on a horizontal, vertical or angled illuminated surface (per unit area). The unit is lux $\left[\mathrm{x}=\mathrm{Im} / \mathrm{m}^{2}\right]$, with luminous flux in [Im$]$ and area in [m^{2}]. Illuminance Ev forms the basis for all lighting calculations and designs.
	Impedance	Impedance is a conductor's apparent resistance to an alternating current.
	IMQ	Italian institute for quality marking; at the same time, the mark of conformity with standards (Istituto Italiano del Marchio di Qualitá).
	Independent lamp operation	Possibility of operating a single lamp with a multi-lamp operating device after the other lamps have failed.
	Independent operating device	Operating device that does not have to be installed in a casing; the safety regulations are fulfilled by the operating device itself.
	Inductance	Inductance establishes the connection between the current and the magnetic flux caused by it in a conductor arrangement after taking account of all design and material fluctuations.
	Inductive circuit	Operation of a fluorescent lamp with a ballast without a capacitor.
	Interference	Interference signals emitted by operating devices via the mains voltage or the air.
	Interference immunity	Property of an operating device to remain fully functional despite interference emitted by other operating devices.
	IP numbers	Code system for marking the protection level of an operating device or a luminaire against moisture or foreign bodies entering (the first figure stands for foreign bodies and the second for moisture).
	IPP technology	Generating the ignition voltage required for high-pressure lamps using the special intelligent pulse pause technology.
L	LBS lamp designation System	Marking system for lamps, established for Europe.
	Leak current	Current of an operating device or a luminaire that is discharged via the potential compensation conductor (earth conductor).
	LED (light emitting diode)	Solid state device embodying a p-n junction, emtting optical radiation when excited by an electric current.
	LED light engine	Functional unit consisting of an LED module and control gear. The LED light module and the control gear can be used separately in two different casings or combined as a single unit.
	LED module	Unit supplied as a light source. In addition to one or more LED's it may contain other components, e.g. optical, electrical, mechanical and/or electronic.
	Light colour	Perceived colour of the light radiated by a lamp.
	LightingEurope	An industry association consisting of European lamp, component and luminaire manufacturers as well as national lighting associations in Europe. LightingEurope is the successor organisation of CELMA and ELC (European Lamp Companies). LightingEurope represents the interests of the European lighting industry.
	Light intensity distribution curve	Represents the spatial distribution of the light intensity of light sources.
	LiTG	German Association for Lighting Technology (Deutsche Lichtrechnische Gesellschaft)
	Luminance L	Luminance L is the luminous intensity density of an area that emits or reflects light with a certain emission angle. The unit of luminance L is $\left[\mathrm{cd} / \mathrm{m}^{2}\right]$ and is the photo-technical measure that corresponds to the subjective perception of the level of brightness of a light source or an object, while luminous flux Φ, luminous intensity I and illuminance E are not visible, i.e. not sensed by the human eye. Light only becomes visible when it hits an object that it is either reflected by or penetrates in a diffused manner. Objects of different levels of brightness therefore only seem to be darker or brighter at same illuminance because they reflect the light differently.
	Luminous efficiency / efficiency	Ratio of luminous flux to power input (lm/W).
	Luminous flux Φ (photon radiation)	Luminous flux Φ is the radiated/emitted light power in lumen [lm] of a light source, a unit of measurement for the number of light photons emitted in all directions. Luminous flux is the photometrical light output perceived by the human eye.
	Luminous intensity I	Luminous intensity I in [cd] is decisive for characterising of a source of light and is defined as a quotient of the emitted luminous flux Φ and the radiated area of the solid angle Ω. Luminous intensity I is thus the focused luminous flux Φ within the radiated solid angle Ω. Today's LEDs can reach a luminous intensity of more than $\mathrm{I}=10 \mathrm{~cd}$. The luminous intensity value depends on the viewing angle, i.e. the luminous intensity of an LED chip in a 30° reflector will be higher than that of an identical LED chip in a 60° reflector. This is because a 60° reflector results in the same luminous flux Φ having to illuminate a larger area.
M	Mains harmonics	Mains current distortions by higher-frequency currents.
	Master/slave circuit	Operating several lamps in different luminaires with one ballast.
	$\boldsymbol{\mu F}$	Unit of capacitance (microfarad)
	MPP capacitors	Metallised polypropylene film dielectric capacitors.
P	Parallel-compensated circuits	Circuit of an inductive ballast with a capacitor between phase and neutral conductor (connected in parallel to the lamp circuit).
	Part load range	Variable load range up to the maximum rated load.
	PELV	Protective extra-low voltage with adequate protection from accidental contact with higher voltages in other parts of the same circuit.
	Phase-cutting leadingedge control	In accordance with the defined angle, voltage regions are suppressed of the positive and negative sinusoidal oscillations of the mains voltage in an upwards direction starting with the voltage zero crossing.
	Pinch temperature	This is measured at a defined point of the lamp base; the permissible maximum values are internationally determined.
	Polyester resin impregnation	High-grade vacuum impregnation with polyester resin.
	Power factor	Ratio of true power to apparent power (total power). Lambda (λ) expresses the power factor for non-sinusoidal currents and voltages. In contrast, $\cos \varphi$ (phi) expresses the power factor for sinusoidal currents or voltages.
	Pulse Ignition	Generation of the ignition voltage for high-pressure lamps with the help of ballasts (ballast insulation must match the ignition voltage).
	PUSH	Key-operated bipolar interface of VS electronic ballasts for controlling the brightness of connected lamps.

R	Reference ballast	Special ballast that is either inductive for lamps operated with mains voltage or ohmic for lamps operated at high frequencies. Reference ballasts are designed to deliver comparable values for testing ballasts, selecting reference lamps and testing mass-produced lamps under standardised conditions.
	Reference lamp	When used in combination with a suitable reference ballast, reference lamps provide key electrical data that are close to the target values laid down in the lamp standards.
S	Safety transformer	Isolation transformer for supplying circuits with safety extra-low voltages.
	SELV	Safety extra-low voltage.
	Short-circuit-proof	Short-circuit-proof operating devices do not pose a safety risk if a short-circuit occurs at the output of the operating device; a difference is made between operating devices offering limited and unlimited protection against short-circuit; in the case of operating devices with limited short-circuit protection, an additional mechanism has to be installed.
	Solid angle Ω	Solid angle Ω is the area within a sphere that is pervaded by the light emitted by a light source. The steradian (sr) is the unit of measure for solid angle, whereby $1 \mathrm{sr}=65.5^{\circ}$. This describes a cone with its peak in the light source and a beam spread angle of 65.5°. A whole solid angle is expressed as $4 Л \mathrm{sr}=12.56 \mathrm{sr}$.
	Standards	VS products comply with the regulations of the following European standards: - Electronic ballasts for fluorescent lamps: EN 61347-1, EN 61347-2-3, EN 60929, EN 55015, EN 61547, EN $61000-3-2$, IEC 62493 - Electronic ballasts for high-pressure discharge lamps: EN $61347-1$, EN $61347-2-12$, EN 55015, EN 61547, EN $61000-3-2$, IEC 62493 - Electronic convertors: EN $61347-1$, EN $61347-2-2$, EN $61047, ~ E N ~ 55015, ~ E N ~ 61547, ~ E N ~ 61000-3-2, ~$ IEC 62493 - Electromagnetic ballasts: EN 61347-1, EN 61347-2-8, EN 61347-2-9, EN 60921 , EN 60923, EN 50294, EN 55015, EN 61547 , EN $61000-3-2$, IEC 62493 - Electromagnetic transformers: EN $61558-1$, EN $61558-2-6$, EN 55015, EN 61547 , EN $61000-3-2$, IEC 62493 - Ignitors: EN 61347-1, EN 61347-2, EN 60927, EN 55015, EN 61547, EN 61000-3-2 - Capacitors: EN 61048, EN 61049 - Lampholders: EN 60238, EN 60400, EN 60838-1, EN 611 184, EN 60399 - Digital control inputs of operating devices: IEC 62386 - LED: IEC 62031 , IEC $61347-1$, IEC $61347-2-13$, IEC 62384, IEC 61231 , IEC TR 61341 , IEC $60838-2-2$, IEC $62471(-1)$, EC 62471-2 - EMC/EMF: EN 55015, EN 61547, EN 61000-3-2, IEC 62493
	Stroboscopic effect	Optical illusion whereby objects appear either to be moving or stationary in contrast to their actual state when illuminated by periodically alternating light.
	Superimposed ignition	Generation of the ignition voltage required for high-pressure lamps by the ignitor independent of the ballast (superimposed over the mains voltage).
	System power consumption	Total power input of lamp and operating device (in watt).
T	ta	Ambient temperature
	TALQ	Industrial consortium for the globally recognised standardisation of a management software interface for outdoor lighting networks. The aim is to enable the interoperability of central management systems and outdoor lighting networks made by different manufacturers.
	Tandem circuit	Series connection of two fluorescent lamps using a single ballast.
	tc	Maximum operating temperature of the casing at the marked measuring point.
	Temperature details	The temperature details on our VS ballasts are always maximum values; these are based on the maximum voltage values given on the type plate.
	The Connected Lighting Alliance	Industrial consortium that was founded by GE Lighting, Lutron, OSRAM, Panasonic, Philips, Toshiba in August 2012 for the purpose of supporting global use and distribution of wireless connectivity in lighting applications.
	Thermal classes	Classification of transformers according to the degree of heat resistance offered by the insulation materials.
	Thermal cut-out	Protection from overheating due to abnormal lamp conditions (rectifier effect, short-circuit and overload), with automatic restart after cooling.
	Transient mains overvoltages	Voltage peaks that briefly occur and are superimposed over the mains voltage.
	T rating	Rated value of the lampholder's maximum operating temperature (e.g. 1130).
	Tungsten-halogen cycle	In the outer, cooler part of the lamp, the halogen combines with the tungsten vapour released by the filament to form a tungstenhalogen molecule which then decomposes and deposits the tungsten on the filament.
	tw	Maximum permissible winding temperature.
U	UL, UL approval	Underwriters' Laboratories Inc., USA; US conformity mark for safety.
V	VDE mark	Safety mark on the basis of the German safety standard for electrical equipment; tested by the VDE-PZI (Verband Deutscher Elektrotechniker - Prüf- und Zertifizierungsinstitut).
W	Winding temperature	Temperature of the copper winding in a magnetic ballast; the change in winding temperature is measured using the change of the resistance of the copper winding.
Z	Zhaga	Global industrial consortium that has taken on the task of standardising the interfaces needed for LED light engines.
	ZVEI	Central association of the electrotechnical and electronics industry in Germany (Zentralverband Elektrotechnik- und Elektronikindustrie e.V.).

- Electronic convertors: EN $61347-1$, EN $61347-2-2$, EN 61047, EN 55015, EN 61547 , EN $61000-3-2$

IEC 62493
EN 55015, EN 61547, EN 61000-3-2, IEC 62493
Electromagnetic transformers: EN $61558-1$, EN $61558-2-6$, EN 55015, EN 61547 , EN 61000-3-2
Ignitors: EN $61347-1$, EN $61347-2$, EN 60927, EN 55015, EN 61547 , EN $61000-3-2$

- Capacitors: EN 61048, EN 61049
- Lampholders: EN 60238, EN 60400, EN 60838-1, EN 61 184, EN 60399

Digiral control inputs of operating devices: 价 62386

IEC 62471(-1), EC 62471-2
EMC/EMF: EN 55015, EN 61547 , EN $61000-3-2$, IEC 62493
Optical illusion whereby objects appear either to be moving or stationary in contrast to their actual state when illuminated by Generation of the ignition voltage required for high-pressure lamps by the ignitor independent of the ballast (superimposed over the mains voltage)

Ambient temperature w im manufacturers

Series connection of two fluorescent lamps using a single ballast
Maximum operating temperature of the casing at the marked measuring point. on the type plate
Industrial consortium that was founded by GE Lighting, Lutron, OSRAM, Panasonic, Philips, Toshiba in August 2012 for the purpose of supporting global use and distribution of wireless connectivity in lighting applications
Classification of transformers according to the degree of heat resistance offered by the insulation materials.
Protection from overheating due to abnormal lamp conditions (rectifier effect, short-circuit and overload), with automatic restart Voltage peaks that briefly occur and are superimposed over the mains voltage.

Rated value of the lampholder's maximum operating temperature (e.g. T130). halogen molecule which then decomposes and deposits the tungsten on the filament
Maximum permissible winding temperature
Underwriters' Laboratories Inc., USA; US conformity mark for safety
Safety mark on the basis of the German safety standard for electrical equipment; tested by the VDE-PZI (Verband Deutscher Temperature of the copper winding in a magnetic ballast; the change in winding temperature is measured using the change of Global industrial consortium that has taken on the task of standardising the interfaces needed for LED light engines

Central association of the electrotechnical and electronics industry in Germany (Zentralverband Elektrotechnik- und Elektronikindustrie e.V.).

Ref. No.	Type	Page	Approval
100061	02110	118	1,3
100063	02111	118	1,3
100064	02120	118	1,3
100125	03210	200	-
100194	06700	200	-
100217	07400	201	-
100270	08610	200	-
100273	08701	200	-
100305	09105	104	1,3
100310	09205	104	1,3
100437	20200	122	-
100442	20400	113	-
100448	20501	113	-
100487	22602	109	1,3
100548	27350	109	1,3
100552	27360	109	1,3
100572	27722	112	1,3
100591	28500	108	1,3
100593	28501	108	1,3
100596	28600	108	1,3
100598	28601	108	1,3
100710	30523	172	1,3
100720	30550	172	1,3
100912	32300	170	1
100913	32301	47	1
100921	32311	47	1
100922	32321	47	1
100925	32326	48	1
100928	32330	48	1
100931	32336	49	1
100932	32341	48	1
100934	32361	48	1
100937	32381	48	1
100939	32400	163,164,166	1
101258	32700	163	1
101274	32720	163	1
101298	35004	95	1,3
101306	35006	95	1,3
101310	35007	95	1,3
101320	35010	95	1,3
101324	35011	96	1,3
101344	35051	96	1,3
101346	35052	96	1,3
101485	36050	97	1,3
101489	36051	97	1,3
101491	36052	97	1,3
101493	36053	97	1,3
101627	43000	118	1,3
101643	46100	112	1,3
101647	46101	112	1,3
101674	47100	110	1,3
101681	47102	110	1,3
101685	47105	110	1,3
101690	47106	110	1,3
101706	47200	111	1,3
101712	47205	111	1,3
101716	47206	111	1,3
101738	47500	110	1,3

Ref. No.	Type	Page	Approval
101740	47502	110	1
101745	47504	111	1,3
101749	47505	110	1,3
101753	47506	110	1,3
101765	47600	111	1,3
101769	47605	111	1,3
101773	47606	111	1,3
101781	47700	111	1,3
101784	47900	111	1,3
101787	48500	112	1,3
101789	48501	112	1,3
101791	48502	112	1,3
101793	48503	112	1,3
102577	62010	43, 193	1
102582	62015	43, 193	1
102599	62050	43, 193	1
102615	62104	43	1
102617	62105	43	1
102624	62310	44, 193	1
102635	62600	42	1
102637	62601	42	1
102938	80003	183	-
102939	80003	183	-
102946	80006	183	-
102947	80006	183	-
102956	80014	196	-
103020	80342	195	-
103021	80342	195	-
103026	80343	195	-
103027	80343	195	-
103087	80433	201	-
103359	81019	182	-
103360	81019	182	-
103365	81022	183	-
103366	81022	183	-
103414	81093	180	-
103415	81093	180	-
103424	81095	180	1,33
103430	81109	180	-
103431	81109	180	-
103442	81120	180	-
103443	81120	180	-
103467	83000	189	-
103468	83000	189	-
103483	83002	190	-
103484	83002	190	-
103504	83006	196	1
103515	83008	196	1
103520	83011	189	1,33
103569	83173	190	-
103570	83173	190	-
103582	83218	195	-
103583	83218	195	-
103587	83218	196	-
103590	83219	195	-
103591	83219	195	-
103594	83219	196	-
103595	83221	195	1

Ref. No.	Type	Page	Approval
103597	83223	195	1
103643	83285	189	1,33
103709	84122	115	-
103710	84122	115	-
103711	84123	115	-
103712	84123	115	-
104928	94304	196	-
105144	96010	196	-
105775	35060	98	-
105776	35060	98	-
105777	35760	98	-
105931	35061	98	-
106094	98085	115	-
106417	35760	98	-
106585	62110	43	1
106767	94068	201	-
106768	94069	201	-
106817	98006	198	-
106829	94450	202	-
106948	09501	203	-
106949	09502	203	-
107096	83015	197	,
107154	05202	200	-
107192	32360	171	1
107193	32340	171	1
107194	32320	171	1
107195	32310	171	1
107213	32390	170	1
107214	32391	170	1
107215	32395	171	1
107331	83015	197	1
107677	21100	49	34
107694	33100	167	-
107716	81096	180	1,33
107780	12801	45,204	1
107958	84172	114	1,3
107960	84174	114	1,3
108208	12800	45,204	1
108267	98004	107, 114	-
108373	12812	45,204	1
108374	12810	45,204	1
108375	12811	45, 204	1
108416	62622	42	1
108438	28921	109	1,3
108608	84175	114	1,3
108614	84175	114	1,3
108666	84172	114	1,3
108669	84174	114	1,3
108747	64740	185	1,33
108748	64800	199	1
108758	64741	186	1,33
108816	22604	109	1,3
108845	97117	113	-
108878	36060	99	1,3
108898	35012	96	1,3
108936	64401	184	1,33
108953	64770	185	1,33
108965	64501	184	1,33

Ref. No.	Type	Page	Approval
108979	31000	169	1,3
108983	64307	177	1,33
109007	31010	169	1,3
109039	83007	190	-
109041	81130	181	-
109044	96172	192	-
109045	97511	188	-
109052	83007	190	-
109054	81130	181	-
109060	96172	192	-
109062	97511	188	-
109074	83293	191	-
109077	85070	186	-
109081	83274	191	-
109084	96159	181	-
109086	97147	113	-
109087	83293	191	-
109092	85070	186	-
109093	83274	191	-
109095	96159	181	-
109098	83035	190	-
109099	83035	190	-
109102	81002	181	-
109103	81002	181	-
109110	85075	178	-
109112	85075	178	-
109145	81024	181	-
109149	96211	181	-
109150	96211	181	-
109152	81132	182	-
109153	81132	182	-
109158	83297	198	1
109159	83282	188	-
109162	03210	200	-
109166	05202	200	-
109184	97698	187	-
109187	96148	190	-
109188	96148	190	-
109190	96154	191	-
109191	96154	191	-
109195	96147	191	-
109196	96147	191	-
109198	83260	197	-
109199	83260	197	-
109200	96229	197	-
109201	96229	197	-
109235	35610	94	1,3
109238	35611	94	1,3
109240	35612	94	1,3
109243	83300	198	-
109247	09708	202	-
109248	09701	203	-
109249	09703	202	-
109253	09701	203	-
109285	08610	200	-
109291	08701	200	-
109317	96160	203	-
109318	96160	203	-

	ENEC applied
	EW^{15}
	c_{L} us
5	
7	(1)
13	KEMA
	a)
14	D_{E}
14a	VDE applied
15	VDE
	\pm
17	5
19	PG
25	B
28	$\begin{aligned} & \left(\left(\Phi_{1}\right)\right) \\ & \text { EMC } \end{aligned}$
31	(1RAW (S)
32	GABE
33	CQC
34	$\mathrm{c} \boldsymbol{I}_{\mathrm{us}}^{\infty}$
35	
36	> DEKRA

Ref. No.	Type	Page	Approval
109330	27700	108	1,3
109331	27701	108	1,3
109383	64001	176	1,33
109384	64001	176	1,33
109386	64101	176	1,33
109387	64101	176	1,33
109411	97244	169	-
109429	64501	184	1,33
109462	83282	188	-
109497	32380	172	1
109512	96124	191	-
109547	33300	162, 164,166	1,34
109548	97255	162	-
109553	94095	164	-
109554	94096	166	-
109555	97260	188	-
109556	97260	188	-
109559	96124	191	-
109560	97698	187	-
109568	62111	43	1
109592	09705	203	-
109600	09704	203	-
109621	94435	201	-
109674	33400	162	1,34
109676	97636	178	-
109677	97636	178	-
109679	97665	187	-
109680	97665	187	-
109685	94088	106	-
109686	09170	106	1,3
109725	97750	202	-
109728	97752	202	-
109794	97664	187	-
109795	97664	187	-
109805	81024	181	-
140413	Z 70 S	24	1,14
140425	Z 250 S	25	1,14
140427	Z 400 S	26	1,14
140430	Z 1000 S	29	1,14
140432	Z 2000 S	32	-
140471	Z 1000 L	30	-
140481	Z 70 K	24	1,14
140489	Z 250 K	25	1,14
140496	Z $1000 \mathrm{~S} / 400 \mathrm{~V}$	30	14
140497	Z 2000 S/400 V	32	14
140499	Z $3500 \mathrm{~S} / 400 \mathrm{~V}$	32	-
140537	CE 50	38	-
140594	Z 400 M	27	1,14
140597	Z 400 MK	27	1,14
140607	Z 1000 TOP	29	14
140608	Z 1200/2,5	31	-
140609	Z 1200/9	31	-
140613	PZS 1000 K	34	14
140617	PZI 1000/1 K	34	14
140621	PU 12 K	35	14
140622	PU 120 K	35	14
140623	PU 121 K	35	-
140627	AS 1000 K	37	1,14

Ref. No.	Type	Page	Approval
140693	Z 400 MS	27	1,14
141580	Z 70 K D20	24	1,14
141581	Z 250 K D20	25	1,14
141582	Z 400 M K D20	27	1,14
141583	Z 400 S D20	26	1,14
141584	Z 1000 S D20	29	1,14
142150	PR 12 K D	35	14
142170	PR 12 KLC	35	14
142330	Z 70 K D20	24	1,14
142350	Z 250 K D20	25	1,14
142370	Z 400 M K D20	27	1,14
142736	SPC 230/10 K	9	1,14
142737	SPC 230/10 K/i	13	13,36
142738	SPC 3/230/10 K/i	13	13,36
142742	SPC 3/230/10 K/i	13	13,36
142743	SP3/230/10 K/i	11	13,36
142744	SP3/230/10 K/i	11	13,36
142746	SPC 3/230/10 K/i-IP66	13	-
142747	SPC 3/230/10 K/i-IP66	13	-
142748	SPC 3/230/10 K/i-IP66	13	13,36
142751	SPC3/230/20 K/i	11	-
142752	SPC3/230/20 K/i	11	-
142753	SPC3/230/10K/i DALI	12	-
142754	SPC3/230/10K/i DALI DI	12	-
142755	SPC3/230/10K/i LS	12	-
142756	SPC3/230/10K/i LS DI	12	-
142783	PZ 1000/400 V A5	33	14
142784	PZ 1000 K D20	33	14
142897	Z 400 M K VS-Power	27	14
146990	Z 750 S	28	14
147230	SP 230/10 K	9	1,14
147233	SP 3/230/10 K	9	15
147240	SP230/10 K/HS/i	10	-
147707	Z 400 M VS-Power	27	14
149820	ESB-6K	14	14
149821	ESB-16HS	14	-
149822	ESB-6K_1A	14	14
149830	DI-5A	12	-
149992	SU $1-10 \mathrm{VK}$	36	14
149993	PR 1-10 V K LC	36	14
163683	L 4/6/8.304	86	1,19,25
163694	L7/9/11.307	86	1,19,25,31
163711	LN 13.313	86	1,19,25,31
163730	LN 16.316	86, 88	1,25
163763	LN 181.319	88	1,19,25,31
163861	LN 15.329	88	1,25
164013	L25.346	88	1
164335	L7/9/11.411	86	1
164342	LN 13.413	86	1
164572	LN 18.510	88	1
164590	LN 36.511	88	1
164680	LN 30.530	88	-
164828	L 58.625	89	-
164870	L 58.657	89	-
169389	LN 58.568	88	1
169645	LN 30.801	88	1
169779	LN 36.570	88	1
183033	EHXc 35.325		1,14,28

Ref. No.	Type	Page	Approval
183035	EHXc 35.325	8	1,14,28
183036	EHXc 70.326	8	1,14,28
183038	EHXc 70.326	8	1,14,28
186072	EST 70/12.380	158	1,14,28
186077	EST 105/12.381	158	1,14,28
186098	EST 150/12.622	158	1,14,28
186173	EST 60/12.635	158	13
188095	ELXC 149.858	82	1,14,28
188140	ELXC 140.862	80, 82	1,14,28
188142	ELXC 154.864	82	1,14,28
188144	ELXC 180.866	80, 82	1,14,28
188616	ELXC 240.863	80, 82	1,14,28
188617	ELXC 249.859	82	1,14,28
188618	ELXC 254.865	80, 82	1,14,28
188619	ELXC 280.538	80, 82	1,14,28
188704	ELXC 136.207	83	14
188705	ELXC 236.208	83	14
188707	ElXC 258.210	83	14
188792	EMXs 180.000	219	36
188793	EMXs 180.001	219	36
188794	EMXs 180.002	219	36
188795	EMXs 180.003	219	36
188823	Battery 4.8V 1.8Ah NiCd	219	-
188824	Battery 4.8V 4.5Ah NiCd	219	-
188825	Battery 4.8V 1.8Ah NiMH	219	-
188826	Battery 4.8V 4.5Ah NiMH	219	-
188827	Battery holder	219	-
188828	Battery holder	219	-
188829	Battery holder	219	-
188921	ELXC 135.220	83	14,28
188922	ELXC 235.221	83	14,28
400772	80476	201	-
400779	80475	201	-
400817	85076	178	-
400818	85076	178	-
400819	85077	187	-
400820	85077	187	-
400913	12600	44	1
400914	12601	44	1
400915	12610	44	1
400916	12611	44	1
400917	12614	45	1
400918	12612	45	1
401536	94444	201	-
401549	94438	201	-
500574	35613	94	1,3
500757	84001	106	-
500810	64401	184	1,33
501356	64601	184	1,33
501358	64601	184	1,33
501942	97268	168	-
502004	33500	168	1,34
502064	97320	169	-
502111	31020	169	1,3
502112	31030	169	1,3
502416	97282	170	-
502515	83301	198	-
503041	64781	185	1,33

Ref. No.	Type	Page	Approval
503457	97000	179	5
503458	97000	179	5
503579	97322	178	-
503923	64201	176	1,33
503924	64201	176	1,33
504078	98011	107,114	-
504302	64719	184	1,33
504303	64719	184	1,33
504615	97321	186	-
504640	83226	195	-
504641	83226	195	-
504643	83227	195	-
504644	83227	195	-
504749	96021	199	-
504769	83283	188	-
504938	97277	100	-
504939	97278	100	-
505014	64770	42	1,33
505251	93088	173	15
505720	64719	42	1,33
505732	09404	104	1,3
505733	09405	104	1,3
505734	09406	104	1,3
505737	09420	105	1,3
505739	09421	105	1,3
505747	09440	105	1,3
505751	09460	106	1,3
505951	83310	168	-
506026	09606	203	-
506027	09606	203	-
506247	64360	177	1,33
506249	64360	177	1,33
506255	64775	185	1,33
506257	64775	185	1,33
506263	64785	185	1,33
506265	64785	185	1,33
506360	Capacitor $85 \mu \mathrm{~F}$	147	1
506363	Capacitor $100 \mu \mathrm{~F}$	147	1
506807	93089	173	15
507049	81018	182	-
507050	81018	182	-
507052	81017	183	-
507053	81017	183	-
507075	83283	188	-
507490	97257	162,168	-
507797	97267	202	-
507798	97267	202	-
508067	97037	179	5
508186	LN 58.116	88	1
508352	96004	182	-
508353	96004	182	-
508458	05202	168	-
508484	Capacitor $25 \mu \mathrm{~F}$	146	1
508562	97355	173	15
508563	97356	173	15
509263	64307	177	1,33
509295	97355	173	15
509296	97356	173	15

	ENEC applied
2	ES ${ }^{15}$
	UL_{L}
5	(H) CSV
7	
13	KEMA
	$\text {) })_{\text {EMC }}^{\text {KEMA }}(\mathbb{}$
	DV_{E}
14a	VDE applied
15	VDE
17	(S)
19	P
25	
28	$\begin{aligned} & \left(\left(\Phi_{2}\right)\right) \\ & \text { EME } \end{aligned}$
31	(1RAM)(S)
32	GR日:
33	CQC
34	$\mathrm{c} \boldsymbol{I}_{\mathrm{us}}$
35	$(T 1)^{\text {usicoonusion }}$
36	> DEKRA

Reference Numbers

Ref. No.	Type	Page	Approval
509373	L 36.120	89	-
509502	LN 26.813	88	1,31
509520	93058	99	-
509522	93056	99	-
520735	85074	179	-
520736	85074	179	-
520759	97708	179	-
520760	97708	179	-
520880	94455	167	-
521123	84105	115	1,3
525583	97760	168	-
526169	Capacitor $4 \mu \mathrm{~F}$	146	1
526170	Capacitor $6 \mu \mathrm{~F}$	146	1
526171	Capacitor $8 \mu \mathrm{~F}$	146	1
526172	Capacitor $12 \mu \mathrm{~F}$	146	1
526886	97497	186	-
528252	12900	45	-
528253	12910	46	-
528254	12911	46	-
528552	Capacitor $20 \mu \mathrm{~F}$	146	1
528554	Capacitor $35 \mu \mathrm{~F}$	146	1
528555	Capacitor $45 \mu \mathrm{~F}$	146	1
528582	L 18.121	89	1
528958	12901	45	-
529029	LN 36.149	88	1
529599	64740	185	1,33
529665	Capacitor $10 \mu \mathrm{~F}$	146	1
529666	Capacitor $16 \mu \mathrm{~F}$	146	1
529836	84103	107	-
530252	L 36.158	89	14
530878	11000	100	1,3,33
530879	11010	100	1,3,33
530941	LN 18.131	88	1
532390	97545	187	-
532391	80023	187	-
532430	13010	49	1
532431	13010	49	1
532602	12800	45,204	1
532603	12801	45,204	1
532604	12810	45,204	1
532605	12811	45,204	1
532606	12812	45,204	1
532610	33906	167	1
533428	12600	44	1
533429	12601	44	1
533430	12610	44	1
533431	12611	44	1
533432	12612	45	1
533663	37001	46	1
533818	64308	177	1
534073	84108	107	1,3
534097	97632	202	-
534252	LN 58.722	89	1
534584	L 36.124	89	14
534624	L 18.933	89	-
534627	L 18.936	89	-
534689	98013	200	-
534832	62063	194	1

Ref. No.	Type	Page	Approval
534833	62063	194	1
535684	62061	194	1
535685	62061	194	1
535977	L 36.132	88	14
536220	12614	45	1
536379	Capacitor $4 \mu \mathrm{~F}$	147	1
536380	Capacitor $6 \mu \mathrm{~F}$	147	1
536381	Capacitor $8 \mu \mathrm{~F}$	147	1
536382	Capacitor $10 \mu \mathrm{~F}$	147	1
536383	Capacitor $12 \mu \mathrm{~F}$	147	1
536386	Capacitor $18 \mu \mathrm{~F}$	147	1
536387	Capacitor $20 \mu \mathrm{~F}$	147	1
536388	Capacitor $25 \mu \mathrm{~F}$	147	1
536389	Capacitor $30 \mu \mathrm{~F}$	147	1
536390	Capacitor $32 \mu \mathrm{~F}$	147	1
536392	Capacitor $40 \mu \mathrm{~F}$	147	1
536393	Capacitor $45 \mu \mathrm{~F}$	147	1
536394	Capacitor $50 \mu \mathrm{~F}$	147	1
536396	Capacitor $60 \mu \mathrm{~F}$	147	1
536400	Capacitor $32 \mu \mathrm{~F}$	147	-
536401	Capacitor $37 \mu \mathrm{~F}$	147	-
536402	Capacitor $50 \mu \mathrm{~F}$	147	-
536404	Capacitor $60 \mu \mathrm{~F}$	147	-
536405	Capacitor $85 \mu \mathrm{~F}$	147	-
536451	62062	194	1
536452	62062	194	1
536743	Capacitor $30 \mu \mathrm{~F}$	146	1
537058	Capacitor $65 \mu \mathrm{~F}$	147	1
538072	L 361.342	88	1
538089	09700	202	-
543303	62370	44,194	1
543304	62070	43,193	1
543402	Capacitor $13.5 \mu \mathrm{~F}$	146	1
543770	40560	121	1
543771	40561	121	1
543772	40562	121	1
543773	40563	121	1
543777	40566	121	1
543778	40567	121	1
543781	40570	121	7
543782	40571	121	7
543783	40572	121	7
543784	40573	121	7
543787	40576	121	7
543788	40577	121	7
543793	40660	120	1
543794	40661	120	1
543795	40662	120	1
543796	40663	120	1
543800	40666	120	1
543801	40667	120	1
543802	40670	120	7
543803	40671	120	7
543805	40672	120	7
543806	40673	120	7
543809	40676	120	7
543810	40677	120	7
544605	62009	43,193	1

Ref. No.	Type	Page	Approval
543803	40671	120	7
543805	40672	120	7
543806	40673	120	7
543809	40676	120	7
543810	40677	120	7
544605	62009	43, 193	1
544621	64800	199	-
545894	09446	105	1,3
545896	09447	106	1,3
545933	09432	105	1,3
545935	09433	105	1,3
545937	09434	105	1,3
545939	09435	105	1,3
546454	64370	176	1,33
546456	64370	176	1,33
546641	27700	108	1,3
546642	27701	108	1,3
550375	83142	182	1
551644	Capacitor $18 \mu \mathrm{~F}$	146	1
554270	JD 2000.81	18	-
554283	JD 2000.83	18	-
554303	J 2000.71	18	-
554304	J 2000.72	18	-
554305	J 2000.73	18	-
554306	JD 2000.81	18	-
554307	JD 2000II. 91	18	-
554308	JD 2000II. 92	18	-
554309	JD 20001. 85	18	-
554310	JD 20001.86	18	-
554311	J 1200.95	18	-
554312	J 2500.96	18	-
554313	VNaHJ 1000.75	19	-
554314	VJ 2000.76	19	-
554315	VJD 2000.77	19	-
554316	VJD 20001. 78	19	-
554904	VNaHJ 1000.75	19	-
554905	VJ 2000.76	19	-
554906	VJD 2000.77	19	-
554909	VJD 20001.78	19	-
560664	LNN 36.648	90	-
564680	64770	189	-
564681	64770	189	-
565816	64380	177	1
569031	LNN 58.960	90	-
570958	NaH 50.654	15	-
570961	NaHJ 35.638	15	-
570962	NaHJ 70.653	15	-
570963	NaHJ 250.915	15	-
570964	NaHJ 100.941	15	-
570965	Q 80.510	20	-
570966	Q 125.512	20	-
570967	Q 250.513	20	1
570968	Q 80/50.551	20	-
570969	Q 125.568	20	1
570970	Q 80.584	20	-
570971	Q 400.612	20	1
570972	Q 250.528	20	1
570973	Q 400.669	20	-

Ref. No.	Type	Page	Approval
570974	NaHJ 150.995	16	-
570975	NaHJ 70.158	16	-
570976	Q 125.549	20	-
570977	NaHJ 70.300	15	-
570978	NaHJ 250.340	15	-
570980	NaHJ 100.941	16	-
570981	Q 125.598	20	-
570982	NaHJ 250.340	15	-
570993	NaHJ 250.915	16	-
570994	NaHJ 150.995	16	-
570995	NaHJ 70.158	16	-
570996	Q 250.703	20	-
570997	NaHJ 100.126	15	1
570998	Q 400.613	20	1
570999	NaHJ 150.679	15	-
571000	Q 400.616	20	-
571003	Q 250.606	20	-
571004	NaHJ 150.159	15	1
571006	NaHJ 250.204	15	1
571008	NaHJ 70.128	15	1
571009	NaHJ 70.128	16	1
571010	NaHJ 70.128	16	1
571011	NaHJ 70.226	16	-
571012	NaHJ 70.226	16	-
571013	NaHJ 150.620	15	1
571015	NaHJ 150.620	16	1
571018	NaHJ 70.128	15	-
571019	NaHJ 150.620	15	-
571020	NaHJ 70.128	16	-
571022	NaHJ 70.128	15	-
571023	NaHJ 150.620	16	-
571025	NaHJ 150.166	16	-
571028	NaHJ 100.941	16	-
571031	NaHJ 100.213	16	-
571042	NaHJ 250.727	17	-
571043	NaHJ 1000.089	17	-
571044	NaHJ 400.006	17	1
571045	NaH 600.010	17	1
571046	NaHJ 1000.089	17	1
571047	NaHJ 400.006	17	-
571048	NaHJ 1000.089	17	1
571049	NaHJ 250.727	17	-
571050	NaHJ 400.737	17	-
571051	NaHJ 1000.089	17	-
571052	NaHJ 250.727	17	-
571053	NaHJ 400.737	17	-
571054	NaHJ 400.737	17	-
571055	NaH 600.005	17	-
571056	NaHJ 1000.089	17	-
571057	NaHJ 400.012	17	-
571058	NaH 600.140	17	1
571074	NaHJ 35.485	15	-
571075	NaHJ 35.485	16	-
571076	NaHJ 35.209	16	-
571077	NaH 50.486	15	-
571078	NaH 50.486	16	-
571080	Q 125/80.611	20	-
571081	NaHJ 70/50.157	16	-

	ENEC applied
2	ES ${ }^{15}$
	UL_{L}
5	(H) CSV
7	
13	KEMA
	$\text {) })_{\text {EMC }}^{\text {KEMA }}(\mathbb{}$
	DV_{E}
14a	VDE applied
15	VDE
17	(S)
19	P
25	
28	$\begin{aligned} & \left(\left(\Phi_{2}\right)\right) \\ & \text { EME } \end{aligned}$
31	(1RAM)(S)
32	GR日:
33	CQC
34	$\mathrm{c} \boldsymbol{I}_{\mathrm{us}}$
35	$(T 1)^{\text {usicoonusion }}$
36	> DEKRA

Ref. No.	Type	Page	
$\mathbf{5 7 1 0 8 5}$	NaHJ $70 / 50.695$	16	-
$\mathbf{5 7 1 2 4 4}$	NaHJ $150 / 100.973$	16	-
$\mathbf{5 7 1 2 4 9}$	NaHJ 250.163	15	-
$\mathbf{5 7 1 2 5 4}$	Q 1000.311	21	-
$\mathbf{5 7 1 2 5 5}$	Q 1000.096	21	-
$\mathbf{5 7 1 2 5 6}$	Q 1000.145	21	-
$\mathbf{5 7 1 2 5 7}$	Q 1000.097	21	-
$\mathbf{5 7 1 6 5 3}$	Capacitor $2.5 \mu \mathrm{~F}$	146	1
$\mathbf{5 7 1 6 5 4}$	Capacitor $4.5 \mu \mathrm{~F}$	146	1
$\mathbf{5 7 1 6 5 5}$	Capacitor $9 \mu \mathrm{~F}$	146	1
$\mathbf{5 7 1 6 5 6}$	Capacitor $40 \mu \mathrm{~F}$	146	1
$\mathbf{5 7 1 6 5 7}$	Capacitor $50 \mu \mathrm{~F}$	146	1
$\mathbf{5 7 1 6 5 8}$	Capacitor $55 \mu \mathrm{~F}$	146	1
$\mathbf{5 7 1 6 5 9}$	Capacitor $60 \mu \mathrm{~F}$	146	1
$\mathbf{5 7 1 6 6 0}$	Capacitor $65 \mu \mathrm{~F}$	146	1
on requ.	64314	177	

1
ENEC
la applied
2 翟 ${ }^{15}$ (D)
${ }_{3} \mathrm{OL}$ us

5

1
csv

7

13
KEMA

13a
) $)$) $)_{\text {EMC }}^{\text {KEMA }}($ (c

14

VDE
14a applied

15

16

17

19

25

28

31

32
CQC
${ }_{c} \mathrm{ND}_{\text {us }}$

35

36
$>$ DEKRA

Subsidiaries	Adress	Phone / Fax / Email
Vossloh-Schwabe Deutschland GmbH	Stuttgarter Straße 61/1	Phone: +49/(0)7181/80 02-0
Germany, Benelux, CIS, Georgia, Great Britain, Ireland,	73614 Schorndorf, Germany	Fax: +49/(0)7181/80 02-122
Austria, Switzerland, Scandinavia, Ukraine		info.vsv@vossloh-schwabe.com
Australia, New Zealand	Branch Office Sydney	Phone: +61 (0)2 88430700
Vossloh-Schwabe Deutschland GmbH	Unit 4C, 6 Boundary Road	Fax: +61 (0)2 78039213
	Northmead, NSW, 2152 , Australia	vs.sales@vsaus.com.au
China	Room 503, Tower A, Site 1	Phone: +86/756 6842737
Vossloh-Schwabe Lighting Solutions (Zhuhai) Ltd.	Hengqin International Innotech Center, No. 418	
	Houpu Road, Hengqin New Area, Zhuhai, China	
East Europe \& Turkey	Sales office Serbia	Phone: + 381358150122
Vossloh-Schwabe Deutschland GmbH	Karl Rojm b.b.	Phone: +4971818002835
	35210 Svilainac, Serbia	sales.ee@vossloh-schwabe.com
France	Branch Office France	Phone: +33/(0)389/20 1212
Vossloh-Schwabe Deutschland GmbH	10 Rue Denis Papin CS50101	Fax: +33/(0)389/24 1865
	68025 Colmar, France	commercial@vossloh-schwabe.com
Hong Kong, Asian Region	Room B5, 17/F., TML Tower	Phone: +852/2877 9688
Vossloh-Schwabe Hong Kong Ltd.	3 Hoi Shing Road,	Fax: +852/2877 9933
	Tsuen Wan, N.T., Hong Kong	sales.vshk@vossloh-schwabe.com
Italy	Via Strada S. Martino 15	Phone: +39/0547/9 8111
Vossloh-Schwabe Italia S.p.A.	47027 Sarsina/Forli-Cesena, Italy	Fax: +39/0547/9 8260
		vs-i@vossloh-schwabe.com
South Africa	Branch Office Johannesburg	Phone: +27/11/3144340
Vossloh-Schwabe Deutschland GmbH	154, Lechwe Avenue, Corporate Park	Fax: +27/11/3145287
	Midrand 1685, South Africa	reinhard.koegel@vossloh-schwabe.com
Spain, South America, Portugal	Venezuela 105, 5° - A	Phone: +34/93/4817070
Vossloh-Schwabe Ibérica, S.L.	08019 Barcelona, Spain	Fax: +34/93/4817071
		vs-e@vossloh-schwabe.com
Thailand	3rd Floor, Unit 1, Bangkok Union Insurance Bldg.	Phone: +66 2634-7311
Vossloh-Schwabe Trading Ltd.	175-177 Surawong Road, Kwaeng Suriyawong	Fax: +66 2634-7313
	Khet Bangrak, Bangkok 10500, Thailand	nipaporn.meepa@vossloh-schwabe.com
USA, Canada, Mexico	26 Century Blvd.	Phone: +1/615/316-5100
Universal ${ }^{\text {TM }}$ Lighting Technologies	Nashville, TN 37214-3683, USA	Fax: + 1/615/316-5205
		oem_sales@unvlt.com

[^0]: Circuit diagrams see page 56

[^1]: * Discharge current: at 5000 A min. 15 strikes; at 10,000 A min. 1 strike

[^2]: * Discharge current: at I N min. 15 strikes; at $I_{\text {max. }} 1$ strike

[^3]: * Discharge current: at 5000 A min. 15 strikes; at 10,000 A min. 1 strike

[^4]: * Ballasts without CE marking for replacements or markets outside of the EU

[^5]: * Ballasts without CE marking for replacements or markets outside of the EU

[^6]: * Ballasts without CE marking for replacements or markets outside of the EU

[^7]: * Suitable for metal halide lamps (HI) with ignition voltage 1 kV in combination with pulse ignitor PZI $1000 / 1 \mathrm{~K}$

[^8]: Plastic casing (PC) with push-in terminals: $\mathbf{0 . 5 - 2 . 5} \mathbf{~ m m}^{\mathbf{2}}$

[^9]: * With IPP technology

[^10]: Plastic casing (PC) with push-in terminals: $\mathbf{0 . 5 - 2 . 5} \mathbf{~ m m}^{\mathbf{2}}$

[^11]: * With IPP technology

[^12]: * With IPP technology
 ** For flange-mounting with gasket for degree of protection IP55

[^13]: * For lamps, e.g. HSR, MSR, SN
 ** For lamps, e.g. HMI, HTI, CDI, RSI, CSR

[^14]: * Suitable ballasts (type: NaHJ...PZT) are available on request

[^15]: * For full-load lamp start
 ** Time of power-reduced operation selectable, starting point of switching-time changes automatically to suit constantly changing day-night cycles
 *** Power reduction after a constant switching-time (delay switching); swichting-time selectable: 3 | $3.5|4| 4.5|5| 5.5 \mid 6$ hrs at 50 Hz
 **** $\quad 120-240 \mathrm{~V} \pm 10 \%$ on request

[^16]: the respective circuit diagram (see pages 62-64).

 Components High-pressure discharge lamps must only be fitted with components that are rated to withstand the respective ignition voltage.

[^17]: * With a conductor of, for instance, 100 pF per $\mathrm{m}\left(3 \times 2.5 \mathrm{~mm}^{2}\right)$ - wiring must be taken into consideration

[^18]: Circuit diagrams see page 131

[^19]: Circuit diagrams see page 131

[^20]: Circuit diagrams see page 131

[^21]: * Ballasts without CE marking for replacements or markets outside of the EU

[^22]: * Ballasts without CE marking for replacements or markets outside of the EU

[^23]: * Ballasts without CE marking for replacements or markets outside of the EU

[^24]: * not included in IEC standard (non-committal specifications)

[^25]: If $\quad \mathrm{PLS} \leq 5 \mathrm{~W}$
 If $5 \mathrm{~W}<$ PLS $\leq 100 \mathrm{~W}$
 If $\quad \mathrm{P}_{\mathrm{LS}}>100 \mathrm{~W}$
 $\eta_{\text {min. }}=0.71$
 $\eta_{\text {min. }}=P$ PLS $/(2 *$ sqrt (PLs/36) $+38 / 36 * P L S+1)$
 (PLS = measured light source power)

[^26]: * Theoretically defined reference values at $25^{\circ} \mathrm{C}$ ambient temperature

[^27]: There are plans to include further electrical equipment in the ENEC Agreement.

